123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: xieguijin(xieguijin@china-icv.cn), yangzihao(yangzihao@china-icv.cn)
- @Data: 2023/08/03
- @Last Modified: 2023/08/03
- @Summary: Functionality metrics
- """
- import math
- import numpy as np
- import pandas as pd
- from scipy.spatial import KDTree
- from score_weight import cal_score_with_priority, cal_weight_from_80
- from common import score_grade, string_concatenate, replace_key_with_value, _cal_max_min_avg
- class Accurate(object):
- """
- Class for achieving accurate metrics for autonomous driving.
- Attributes:
- df: Vehicle driving data, stored in dataframe format.
- """
- def __init__(self, data_processed, scoreModel, resultPath):
- # self.eval_data = pd.DataFrame()
- # self.data_processed = data_processed
- self.scoreModel = scoreModel
- self.resultPath = resultPath
- self.df = data_processed.ego_df
- self.df_trajectory = data_processed.trajectory_df # 读取轨迹的数据
- self.config = data_processed.config
- accurate_config = data_processed.accurate_config
- self.accurate_config = accurate_config
- # common data
- self.builtin_metric_list = self.config.builtinMetricList
- # dimension data
- self.weight_custom = accurate_config['weightCustom']
- self.metric_list = accurate_config['metric']
- self.type_list = accurate_config['type']
- self.type_name_dict = accurate_config['typeName']
- self.name_dict = accurate_config['name']
- self.unit_dict = accurate_config['unit']
- # custom metric data
- self.customMetricParam = accurate_config['customMetricParam']
- self.custom_metric_list = list(self.customMetricParam.keys())
- self.custom_data = {}
- self.custom_param_dict = {}
- # score data
- self.weight = accurate_config['weightDimension']
- self.weight_type_dict = accurate_config['typeWeight']
- self.weight_type_list = accurate_config['typeWeightList']
- self.weight_dict = accurate_config['weight']
- self.weight_list = accurate_config['weightList']
- self.priority_dict = accurate_config['priority']
- self.priority_list = accurate_config['priorityList']
- self.kind_dict = accurate_config['kind']
- self.optimal_dict = accurate_config['optimal']
- self.multiple_dict = accurate_config['multiple']
- self.kind_list = accurate_config['kindList']
- self.optimal_list = accurate_config['optimalList']
- self.multiple_list = accurate_config['multipleList']
- # metric data
- self.metric_dict = accurate_config['typeMetricDict']
- # self.drive_metric_list = self.metric_dict['accurateDrive']
- # self.stop_metric_list = self.metric_dict['accurateStop']
- # self.drive_metric_list = ["averageSpeed"]
- # self.stop_metric_list = ["stopDuration", "stopCount"]
- # metric value
- self.positionError_list = []
- self.executeAccurateError_list = []
- self.positionError_dict = {}
- self.positionError_sum = 0
- # self.executeAccurateError_count = 0
- self.positionError = 0
- self.executeAccurateError = 0
- def _accurate_metric_cal(self):
- self._positionError_cal()
- self._executeAccurateError_cal()
- def _executeAccurateError_cal(self):
- # 用于记录段数的变量
- error_segment_count = 0
- # 标记当前是否在目标数字的段中
- in_segment = False
- targets = [21201000300, 21201000001, 21201000002, 21202000000, 21203000200, 21203000300]
- task_error_code_list = self.df.task_error_code.tolist()
- for target in targets:
- for number in task_error_code_list:
- # 如果当前数字是目标数字,并且我们之前不在段中
- if number == target and not in_segment:
- # 开始一个新的段
- error_segment_count += 1
- in_segment = True
- # 如果当前数字不是目标数字,并且我们之前在段中
- elif number != target and in_segment:
- # 结束当前的段
- in_segment = False
- # 注意:如果列表以目标数字结束,并且没有额外的非目标数字来结束段,
- # 则上面的循环将不会将最后一个段计数。我们需要在这里检查它。
- if task_error_code_list and (task_error_code_list[-1] == target) and in_segment:
- error_segment_count += 1
- self.executeAccurateError = error_segment_count
- def _positionError_cal(self):
- self.df_trajectory['ego_pos'] = self.df_trajectory.apply(lambda row: (row['ego_posX'], row['ego_posY']),
- axis=1).tolist()
- self.df_trajectory['target_pos'] = self.df_trajectory.apply(lambda row: (row['TargetX'], row['TargetY']),
- axis=1).tolist()
- print("self.df_trajectory['target_pos'] is", type(self.df_trajectory['target_pos'].tolist()))
- ego_pos = np.array(self.df_trajectory['ego_pos'].tolist())
- target_pos = KDTree(np.array(self.df_trajectory['target_pos'].tolist()))
- print("target_pos is", target_pos)
- min_distances = target_pos.query(ego_pos, k=1)[0].ravel()
- print("min_distances is", min_distances)
- # 初始化存储最小距离的列表
- min_distance = min_distances
- # 遍历第一组坐标
- # for P in self.df_trajectory['ego_pos']:
- # min_dist = float('inf') # 初始化为正无穷大
- # # 遍历第二组坐标
- # for Q in self.df_trajectory['target_pos']:
- # # 计算两点间的距离
- # dist = math.sqrt((P[0] - Q[0]) ** 2 + (P[1] - Q[1]) ** 2)
- # # 更新最小距离
- # if dist < min_dist:
- # min_dist = dist
- # # 存储最小距离
- # min_distances.append(min_dist)
- # print("min_distances is", min_distances)
- self.positionError_list = min_distance
- self.positionError = np.std(np.array(min_distance))
- def _accurate_statistic(self):
- """
- """
- self._accurate_metric_cal()
- self.positionError_dict = _cal_max_min_avg(self.positionError_list) if len(self.positionError_list)>0 else {}
- arr_accurate = [[self.positionError, self.executeAccurateError]]
- return arr_accurate
- def _score_cal(self):
- """
- """
- arr_accurate = self._accurate_statistic()
- print("\n[准确性表现及得分情况]")
- print("准确性各指标值:", [[round(num, 2) for num in row] for row in arr_accurate])
- arr_accurate = np.array(arr_accurate)
- score_model = self.scoreModel(self.kind_list, self.optimal_list, self.multiple_list, arr_accurate)
- score_sub = score_model.cal_score()
- score_sub = list(map(lambda x: 80 if np.isnan(x) else x, score_sub))
- score_metric = [round(num, 2) for num in score_sub]
- metric_list = [x for x in self.metric_list if x in self.config.builtinMetricList]
- score_metric_dict = {key: value for key, value in zip(metric_list, score_metric)}
- score_metric_dict = {key: score_metric_dict[key] for key in self.metric_list}
- score_metric = list(score_metric_dict.values())
- score_type_dict = {}
- if self.weight_custom: # 自定义权重
- score_metric_with_weight_dict = {key: score_metric_dict[key] * self.weight_dict[key] for key in
- self.weight_dict}
- for type in self.type_list:
- type_score = sum(
- value for key, value in score_metric_with_weight_dict.items() if key in self.metric_dict[type])
- score_type_dict[type] = round(type_score, 2)
- score_type_with_weight_dict = {key: score_type_dict[key] * self.weight_type_dict[key] for key in
- score_type_dict}
- score_accurate = sum(score_type_with_weight_dict.values())
- else: # 客观赋权
- self.weight_list = cal_weight_from_80(score_metric)
- self.weight_dict = {key: value for key, value in zip(self.metric_list, self.weight_list)}
- score_accurate = cal_score_with_priority(score_metric, self.weight_list, self.priority_list)
- for type in self.type_list:
- type_weight = sum(value for key, value in self.weight_dict.items() if key in self.metric_dict[type])
- self.weight_dict = {key: round(value / type_weight, 4) for key, value in self.weight_dict.items() if
- key in self.metric_dict[type]}
- type_score_metric = [value for key, value in score_metric_dict.items() if key in self.metric_dict[type]]
- type_weight_list = [value for key, value in self.weight_dict.items() if key in self.metric_dict[type]]
- type_priority_list = [value for key, value in self.priority_dict.items() if
- key in self.metric_dict[type]]
- type_score = cal_score_with_priority(type_score_metric, type_weight_list, type_priority_list)
- score_type_dict[type] = round(type_score, 2)
- score_accurate = round(score_accurate, 2)
- print("准确性各指标基准值:", self.optimal_list)
- print(f"准确性得分为:{score_accurate:.2f}分。")
- print(f"准确性各类型得分为:{score_type_dict}。")
- print(f"准确性各指标得分为:{score_metric_dict}。")
- return score_accurate, score_type_dict, score_metric_dict
- def report_statistic(self):
- """
- Returns:
- """
- report_dict = {
- "name": "准确性",
- "weight": f"{self.weight * 100:.2f}%",
- }
- score_accurate, score_type_dict, score_metric_dict = self._score_cal()
- # score_accurate, score_metric = self.effi_score()
- score_accurate = int(score_accurate) if int(score_accurate) == score_accurate else round(score_accurate, 2)
- grade_accurate = score_grade(score_accurate)
- report_dict["score"] = score_accurate
- report_dict["level"] = grade_accurate
- description = f"· 在准确性方面,得分{score_accurate}分,表现{grade_accurate},"
- is_good = True
- if self.positionError_sum > 1:
- is_good = False
- description += f"行驶过程中,位置偏移总误差为{self.positionError_sum}米,需重点优化。"
- if self.executeAccurateError > 0:
- is_good = False
- description += f"出现{self.executeAccurateError}次任务执行状态错误,需重点优化。"
- if is_good:
- description += f"行驶准确且任务执行准确,算法表现优秀。"
- report_dict["description"] = description
- description1 = f"最大值:{self.positionError_dict['max']}m;" \
- f"最小值:{self.positionError_dict['min']}m;" \
- f"平均值:{self.positionError_dict['avg']}m" if self.positionError_dict else "位置偏移无误差"
- description2 = f"次数:{self.executeAccurateError}次"
- positionError_index = {
- "weight": self.weight_dict['positionError'],
- "score": score_metric_dict['positionError'],
- "description": description1
- }
- executeAccurateError_index = {
- "weight": self.weight_dict['executeAccurateError'],
- "score": score_metric_dict['executeAccurateError'],
- "description": description2
- }
- indexes_dict = {
- "positionError": positionError_index,
- "executeAccurateError": executeAccurateError_index
- }
- report_dict["indexes"] = indexes_dict
- print(report_dict)
- return report_dict
|