accurate.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: xieguijin(xieguijin@china-icv.cn), yangzihao(yangzihao@china-icv.cn)
  10. @Data: 2023/08/03
  11. @Last Modified: 2023/08/03
  12. @Summary: Functionality metrics
  13. """
  14. import math
  15. import numpy as np
  16. import pandas as pd
  17. from scipy.spatial import KDTree
  18. from score_weight import cal_score_with_priority, cal_weight_from_80
  19. from common import score_grade, string_concatenate, replace_key_with_value, _cal_max_min_avg
  20. class Accurate(object):
  21. """
  22. Class for achieving accurate metrics for autonomous driving.
  23. Attributes:
  24. df: Vehicle driving data, stored in dataframe format.
  25. """
  26. def __init__(self, data_processed, scoreModel, resultPath):
  27. # self.eval_data = pd.DataFrame()
  28. # self.data_processed = data_processed
  29. self.scoreModel = scoreModel
  30. self.resultPath = resultPath
  31. self.df = data_processed.ego_df
  32. self.df_trajectory = data_processed.trajectory_df # 读取轨迹的数据
  33. self.config = data_processed.config
  34. accurate_config = data_processed.accurate_config
  35. self.accurate_config = accurate_config
  36. # common data
  37. self.builtin_metric_list = self.config.builtinMetricList
  38. # dimension data
  39. self.weight_custom = accurate_config['weightCustom']
  40. self.metric_list = accurate_config['metric']
  41. self.type_list = accurate_config['type']
  42. self.type_name_dict = accurate_config['typeName']
  43. self.name_dict = accurate_config['name']
  44. self.unit_dict = accurate_config['unit']
  45. # custom metric data
  46. self.customMetricParam = accurate_config['customMetricParam']
  47. self.custom_metric_list = list(self.customMetricParam.keys())
  48. self.custom_data = {}
  49. self.custom_param_dict = {}
  50. # score data
  51. self.weight = accurate_config['weightDimension']
  52. self.weight_type_dict = accurate_config['typeWeight']
  53. self.weight_type_list = accurate_config['typeWeightList']
  54. self.weight_dict = accurate_config['weight']
  55. self.weight_list = accurate_config['weightList']
  56. self.priority_dict = accurate_config['priority']
  57. self.priority_list = accurate_config['priorityList']
  58. self.kind_dict = accurate_config['kind']
  59. self.optimal_dict = accurate_config['optimal']
  60. self.multiple_dict = accurate_config['multiple']
  61. self.kind_list = accurate_config['kindList']
  62. self.optimal_list = accurate_config['optimalList']
  63. self.multiple_list = accurate_config['multipleList']
  64. # metric data
  65. self.metric_dict = accurate_config['typeMetricDict']
  66. # self.drive_metric_list = self.metric_dict['accurateDrive']
  67. # self.stop_metric_list = self.metric_dict['accurateStop']
  68. # self.drive_metric_list = ["averageSpeed"]
  69. # self.stop_metric_list = ["stopDuration", "stopCount"]
  70. # metric value
  71. self.positionError_list = []
  72. self.executeAccurateError_list = []
  73. self.positionError_dict = {}
  74. self.positionError_sum = 0
  75. # self.executeAccurateError_count = 0
  76. self.positionError = 0
  77. self.executeAccurateError = 0
  78. def _accurate_metric_cal(self):
  79. self._positionError_cal()
  80. self._executeAccurateError_cal()
  81. def _executeAccurateError_cal(self):
  82. # 用于记录段数的变量
  83. error_segment_count = 0
  84. # 标记当前是否在目标数字的段中
  85. in_segment = False
  86. targets = [21201000300, 21201000001, 21201000002, 21202000000, 21203000200, 21203000300]
  87. task_error_code_list = self.df.task_error_code.tolist()
  88. for target in targets:
  89. for number in task_error_code_list:
  90. # 如果当前数字是目标数字,并且我们之前不在段中
  91. if number == target and not in_segment:
  92. # 开始一个新的段
  93. error_segment_count += 1
  94. in_segment = True
  95. # 如果当前数字不是目标数字,并且我们之前在段中
  96. elif number != target and in_segment:
  97. # 结束当前的段
  98. in_segment = False
  99. # 注意:如果列表以目标数字结束,并且没有额外的非目标数字来结束段,
  100. # 则上面的循环将不会将最后一个段计数。我们需要在这里检查它。
  101. if task_error_code_list and (task_error_code_list[-1] == target) and in_segment:
  102. error_segment_count += 1
  103. self.executeAccurateError = error_segment_count
  104. def _positionError_cal(self):
  105. self.df_trajectory['ego_pos'] = self.df_trajectory.apply(lambda row: (row['ego_posX'], row['ego_posY']),
  106. axis=1).tolist()
  107. self.df_trajectory['target_pos'] = self.df_trajectory.apply(lambda row: (row['TargetX'], row['TargetY']),
  108. axis=1).tolist()
  109. print("self.df_trajectory['target_pos'] is", type(self.df_trajectory['target_pos'].tolist()))
  110. ego_pos = np.array(self.df_trajectory['ego_pos'].tolist())
  111. target_pos = KDTree(np.array(self.df_trajectory['target_pos'].tolist()))
  112. print("target_pos is", target_pos)
  113. min_distances = target_pos.query(ego_pos, k=1)[0].ravel()
  114. print("min_distances is", min_distances)
  115. # 初始化存储最小距离的列表
  116. min_distance = min_distances
  117. # 遍历第一组坐标
  118. # for P in self.df_trajectory['ego_pos']:
  119. # min_dist = float('inf') # 初始化为正无穷大
  120. # # 遍历第二组坐标
  121. # for Q in self.df_trajectory['target_pos']:
  122. # # 计算两点间的距离
  123. # dist = math.sqrt((P[0] - Q[0]) ** 2 + (P[1] - Q[1]) ** 2)
  124. # # 更新最小距离
  125. # if dist < min_dist:
  126. # min_dist = dist
  127. # # 存储最小距离
  128. # min_distances.append(min_dist)
  129. # print("min_distances is", min_distances)
  130. self.positionError_list = min_distance
  131. self.positionError = np.std(np.array(min_distance))
  132. def _accurate_statistic(self):
  133. """
  134. """
  135. self._accurate_metric_cal()
  136. self.positionError_dict = _cal_max_min_avg(self.positionError_list) if len(self.positionError_list)>0 else {}
  137. arr_accurate = [[self.positionError, self.executeAccurateError]]
  138. return arr_accurate
  139. def _score_cal(self):
  140. """
  141. """
  142. arr_accurate = self._accurate_statistic()
  143. print("\n[准确性表现及得分情况]")
  144. print("准确性各指标值:", [[round(num, 2) for num in row] for row in arr_accurate])
  145. arr_accurate = np.array(arr_accurate)
  146. score_model = self.scoreModel(self.kind_list, self.optimal_list, self.multiple_list, arr_accurate)
  147. score_sub = score_model.cal_score()
  148. score_sub = list(map(lambda x: 80 if np.isnan(x) else x, score_sub))
  149. score_metric = [round(num, 2) for num in score_sub]
  150. metric_list = [x for x in self.metric_list if x in self.config.builtinMetricList]
  151. score_metric_dict = {key: value for key, value in zip(metric_list, score_metric)}
  152. score_metric_dict = {key: score_metric_dict[key] for key in self.metric_list}
  153. score_metric = list(score_metric_dict.values())
  154. score_type_dict = {}
  155. if self.weight_custom: # 自定义权重
  156. score_metric_with_weight_dict = {key: score_metric_dict[key] * self.weight_dict[key] for key in
  157. self.weight_dict}
  158. for type in self.type_list:
  159. type_score = sum(
  160. value for key, value in score_metric_with_weight_dict.items() if key in self.metric_dict[type])
  161. score_type_dict[type] = round(type_score, 2)
  162. score_type_with_weight_dict = {key: score_type_dict[key] * self.weight_type_dict[key] for key in
  163. score_type_dict}
  164. score_accurate = sum(score_type_with_weight_dict.values())
  165. else: # 客观赋权
  166. self.weight_list = cal_weight_from_80(score_metric)
  167. self.weight_dict = {key: value for key, value in zip(self.metric_list, self.weight_list)}
  168. score_accurate = cal_score_with_priority(score_metric, self.weight_list, self.priority_list)
  169. for type in self.type_list:
  170. type_weight = sum(value for key, value in self.weight_dict.items() if key in self.metric_dict[type])
  171. self.weight_dict = {key: round(value / type_weight, 4) for key, value in self.weight_dict.items() if
  172. key in self.metric_dict[type]}
  173. type_score_metric = [value for key, value in score_metric_dict.items() if key in self.metric_dict[type]]
  174. type_weight_list = [value for key, value in self.weight_dict.items() if key in self.metric_dict[type]]
  175. type_priority_list = [value for key, value in self.priority_dict.items() if
  176. key in self.metric_dict[type]]
  177. type_score = cal_score_with_priority(type_score_metric, type_weight_list, type_priority_list)
  178. score_type_dict[type] = round(type_score, 2)
  179. score_accurate = round(score_accurate, 2)
  180. print("准确性各指标基准值:", self.optimal_list)
  181. print(f"准确性得分为:{score_accurate:.2f}分。")
  182. print(f"准确性各类型得分为:{score_type_dict}。")
  183. print(f"准确性各指标得分为:{score_metric_dict}。")
  184. return score_accurate, score_type_dict, score_metric_dict
  185. def report_statistic(self):
  186. """
  187. Returns:
  188. """
  189. report_dict = {
  190. "name": "准确性",
  191. "weight": f"{self.weight * 100:.2f}%",
  192. }
  193. score_accurate, score_type_dict, score_metric_dict = self._score_cal()
  194. # score_accurate, score_metric = self.effi_score()
  195. score_accurate = int(score_accurate) if int(score_accurate) == score_accurate else round(score_accurate, 2)
  196. grade_accurate = score_grade(score_accurate)
  197. report_dict["score"] = score_accurate
  198. report_dict["level"] = grade_accurate
  199. description = f"· 在准确性方面,得分{score_accurate}分,表现{grade_accurate},"
  200. is_good = True
  201. if self.positionError_sum > 1:
  202. is_good = False
  203. description += f"行驶过程中,位置偏移总误差为{self.positionError_sum}米,需重点优化。"
  204. if self.executeAccurateError > 0:
  205. is_good = False
  206. description += f"出现{self.executeAccurateError}次任务执行状态错误,需重点优化。"
  207. if is_good:
  208. description += f"行驶准确且任务执行准确,算法表现优秀。"
  209. report_dict["description"] = description
  210. description1 = f"最大值:{self.positionError_dict['max']}m;" \
  211. f"最小值:{self.positionError_dict['min']}m;" \
  212. f"平均值:{self.positionError_dict['avg']}m" if self.positionError_dict else "位置偏移无误差"
  213. description2 = f"次数:{self.executeAccurateError}次"
  214. positionError_index = {
  215. "weight": self.weight_dict['positionError'],
  216. "score": score_metric_dict['positionError'],
  217. "description": description1
  218. }
  219. executeAccurateError_index = {
  220. "weight": self.weight_dict['executeAccurateError'],
  221. "score": score_metric_dict['executeAccurateError'],
  222. "description": description2
  223. }
  224. indexes_dict = {
  225. "positionError": positionError_index,
  226. "executeAccurateError": executeAccurateError_index
  227. }
  228. report_dict["indexes"] = indexes_dict
  229. print(report_dict)
  230. return report_dict