123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: zhanghaiwen(zhanghaiwen@china-icv.cn), yangzihao(yangzihao@china-icv.cn)
- @Data: 2023/06/25
- @Last Modified: 2023/06/25
- @Summary: Comfort metrics
- """
- import os
- import sys
- import math
- import pandas as pd
- import numpy as np
- import scipy.signal
- sys.path.append('../common')
- sys.path.append('../modules')
- sys.path.append('../results')
- from data_info import DataInfoList
- from score_weight import cal_score_with_priority, cal_weight_from_80
- from common import get_interpolation, score_grade, string_concatenate, replace_key_with_value, _cal_max_min_avg
- import matplotlib.pyplot as plt
- def peak_valley_decorator(method):
- def wrapper(self, *args, **kwargs):
- peak_valley = self._peak_valley_determination(self.df)
- pv_list = self.df.loc[peak_valley, ['simTime', 'speedH']].values.tolist()
- if len(pv_list) != 0:
- flag = True
- p_last = pv_list[0]
- for i in range(1, len(pv_list)):
- p_curr = pv_list[i]
- if self._peak_valley_judgment(p_last, p_curr):
- # method(self, p_curr, p_last)
- method(self, p_curr, p_last, flag, *args, **kwargs)
- else:
- p_last = p_curr
- return method
- else:
- flag = False
- p_curr = [0, 0]
- p_last = [0, 0]
- method(self, p_curr, p_last, flag, *args, **kwargs)
- return method
- return wrapper
- class Comfort(object):
- """
- Class for achieving comfort metrics for autonomous driving.
- Attributes:
- dataframe: Vehicle driving data, stored in dataframe format.
- """
- def __init__(self, data_processed, scoreModel, resultPath):
- self.eval_data = pd.DataFrame()
- self.data_processed = data_processed
- self.scoreModel = scoreModel
- self.resultPath = resultPath
- # self.data = data_processed.obj_data[1]
- self.data = data_processed.ego_df
- self.mileage = data_processed.report_info['mileage']
- self.ego_df = pd.DataFrame()
- # self.discomfort_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
- self.config = data_processed.config
- comfort_config = data_processed.comfort_config
- self.comfort_config = comfort_config
- # common data
- self.bulitin_metric_list = self.config.builtinMetricList
- # dimension data
- self.weight_custom = comfort_config['weightCustom']
- self.metric_list = comfort_config['metric']
- self.type_list = comfort_config['type']
- self.type_name_dict = comfort_config['typeName']
- self.name_dict = comfort_config['name']
- self.unit_dict = comfort_config['unit']
- # custom metric data
- # self.customMetricParam = comfort_config['customMetricParam']
- # self.custom_metric_list = list(self.customMetricParam.keys())
- # self.custom_data = custom_data
- # self.custom_param_dict = {}
- # score data
- self.weight = comfort_config['weightDimension']
- self.weight_type_dict = comfort_config['typeWeight']
- self.weight_type_list = comfort_config['typeWeightList']
- self.weight_dict = comfort_config['weight']
- self.weight_list = comfort_config['weightList']
- self.priority_dict = comfort_config['priority']
- self.priority_list = comfort_config['priorityList']
- self.kind_dict = comfort_config['kind']
- self.optimal_dict = comfort_config['optimal']
- # self.optimal1_dict = self.optimal_dict[0]
- # self.optimal2_dict = self.optimal_dict[1]
- # self.optimal3_dict = self.optimal_dict[2]
- self.multiple_dict = comfort_config['multiple']
- self.kind_list = comfort_config['kindList']
- self.optimal_list = comfort_config['optimalList']
- self.multiple_list = comfort_config['multipleList']
- # metric data
- self.metric_dict = comfort_config['typeMetricDict']
- self.lat_metric_list = self.metric_dict['comfortLat']
- self.lon_metric_list = self.metric_dict['comfortLon']
- # self.lat_metric_list = ["zigzag", "shake"]
- # self.lon_metric_list = ["cadence", "slamBrake", "slamAccelerate"]
- self.time_list = data_processed.driver_ctrl_data['time_list']
- self.frame_list = data_processed.driver_ctrl_data['frame_list']
- self.speed_list = []
- self.commandSpeed_list = []
- self.accel_list = []
- self.accelH_list = []
- self.linear_accel_dict = dict()
- self.angular_accel_dict = dict()
- self.speed_instruction_dict = dict()
- self.count_dict = {}
- self.duration_dict = {}
- self.strength_dict = {}
- self.discomfort_count = 0
- self.zigzag_count = 0
- # self.shake_count = 0
- self.cadence_count = 0
- self.slam_brake_count = 0
- self.slam_accel_count = 0
- self.speed_instruction_jump_count = 0
- # self.zigzag_strength = 0
- # self.shake_strength = 0
- # self.cadence_strength = 0
- # self.slam_brake_strength = 0
- # self.slam_accel_strength = 0
- #
- self.discomfort_duration = 0
- # self.zigzag_duration = 0
- # self.shake_duration = 0
- # self.cadence_duration = 0
- # self.slam_brake_duration = 0
- # self.slam_accel_duration = 0
- self.zigzag_time_list = []
- # self.zigzag_frame_list = []
- self.zigzag_stre_list = []
- self.cur_ego_path_list = []
- self.curvature_list = []
- self._get_data()
- self._comf_param_cal()
- def _get_data(self):
- """
- """
- comfort_info_list = DataInfoList.COMFORT_INFO
- self.ego_df = self.data[comfort_info_list].copy()
- # self.df = self.ego_df.set_index('simFrame') # 索引是csv原索引
- self.df = self.ego_df.reset_index(drop=True) # 索引是csv原索引
- def _cal_cur_ego_path(self, row):
- try:
- divide = (row['speedX'] ** 2 + row['speedY'] ** 2) ** (3 / 2)
- if not divide:
- res = None
- else:
- res = (row['speedX'] * row['accelY'] - row['speedY'] * row['accelX']) / divide
- except:
- res = None
- return res
- def _comf_param_cal(self):
- """
- """
- # for i in range(len(self.optimal_list)):
- # if i % 3 == 2:
- # continue
- # else:
- # self.optimal_list[i] = round(self.optimal_list[i] * self.mileage / 100000, 8)
- # self.optimal_list = [round(self.optimal_list[i] * self.mileage / 100000, 8) for i in range(len(self.optimal_list))]
- self.optimal_dict = {key: value * self.mileage / 100000 for key, value in self.optimal_dict.copy().items()}
- # self.optimal1_dict = {key: value * self.mileage / 100000 for key, value in self.optimal1_dict.copy().items()}
- # self.optimal2_dict = {key: value * self.mileage / 100000 for key, value in self.optimal2_dict.copy().items()}
- # [log]
- self.ego_df['ip_acc'] = self.ego_df['v'].apply(get_interpolation, point1=[18, 4], point2=[72, 2])
- self.ego_df['ip_dec'] = self.ego_df['v'].apply(get_interpolation, point1=[18, -5], point2=[72, -3.5])
- self.ego_df['slam_brake'] = self.ego_df.apply(
- lambda row: self._slam_brake_process(row['lon_acc'], row['ip_dec']), axis=1)
- self.ego_df['slam_accel'] = self.ego_df.apply(
- lambda row: self._slam_accelerate_process(row['lon_acc'], row['ip_acc']), axis=1)
- self.ego_df['cadence'] = self.ego_df.apply(
- lambda row: self._cadence_process_new(row['lon_acc'], row['ip_acc'], row['ip_dec']), axis=1)
- self.speed_list = self.ego_df['v'].values.tolist()
- self.commandSpeed_list = self.ego_df['cmd_lon_v'].values.tolist()
- self.accel_list = self.ego_df['accel'].values.tolist()
- self.accelH_list = self.ego_df['accelH'].values.tolist()
- v_jump_threshold = 0.5
- self.ego_df['cmd_lon_v_diff'] = self.ego_df['cmd_lon_v'].diff()
- self.ego_df['cmd_v_jump'] = (abs(self.ego_df['cmd_lon_v_diff']) > v_jump_threshold).astype(int)
- self.linear_accel_dict = _cal_max_min_avg(self.ego_df['accel'].dropna().values.tolist())
- self.angular_accel_dict = _cal_max_min_avg(self.ego_df['accelH'].dropna().values.tolist())
- self.speed_instruction_dict = _cal_max_min_avg(self.ego_df['cmd_lon_v_diff'].dropna().values.tolist())
- def _peak_valley_determination(self, df):
- """
- Determine the peak and valley of the vehicle based on its current angular velocity.
- Parameters:
- df: Dataframe containing the vehicle angular velocity.
- Returns:
- peak_valley: List of indices representing peaks and valleys.
- """
- peaks, _ = scipy.signal.find_peaks(df['speedH'], height=0.01, distance=1, prominence=0.01)
- valleys, _ = scipy.signal.find_peaks(-df['speedH'], height=0.01, distance=1, prominence=0.01)
- peak_valley = sorted(list(peaks) + list(valleys))
- return peak_valley
- def _peak_valley_judgment(self, p_last, p_curr, tw=6000, avg=0.4):
- """
- Determine if the given peaks and valleys satisfy certain conditions.
- Parameters:
- p_last: Previous peak or valley data point.
- p_curr: Current peak or valley data point.
- tw: Threshold time difference between peaks and valleys.
- avg: Angular velocity gap threshold.
- Returns:
- Boolean indicating whether the conditions are satisfied.
- """
- t_diff = p_curr[0] - p_last[0]
- v_diff = abs(p_curr[1] - p_last[1])
- s = p_curr[1] * p_last[1]
- zigzag_flag = t_diff < tw and v_diff > avg and s < 0
- if zigzag_flag and ([p_last[0], p_curr[0]] not in self.zigzag_time_list):
- self.zigzag_time_list.append([p_last[0], p_curr[0]])
- return zigzag_flag
- @peak_valley_decorator
- def zigzag_count_func(self, p_curr, p_last, flag=True):
- """
- Count the number of zigzag movements.
- Parameters:
- df: Input dataframe data.
- Returns:
- zigzag_count: Number of zigzag movements.
- """
- if flag:
- self.zigzag_count += 1
- else:
- self.zigzag_count += 0
- @peak_valley_decorator
- def cal_zigzag_strength_strength(self, p_curr, p_last, flag=True):
- """
- Calculate various strength statistics.
- Returns:
- Tuple containing maximum strength, minimum strength,
- average strength, and 99th percentile strength.
- """
- if flag:
- v_diff = abs(p_curr[1] - p_last[1])
- t_diff = p_curr[0] - p_last[0]
- self.zigzag_stre_list.append(v_diff / t_diff) # 平均角加速度
- else:
- self.zigzag_stre_list = []
- def _cadence_process(self, lon_acc_roc, ip_dec_roc):
- if abs(lon_acc_roc) >= abs(ip_dec_roc) or abs(lon_acc_roc) < 1:
- return np.nan
- # elif abs(lon_acc_roc) == 0:
- elif abs(lon_acc_roc) == 0:
- return 0
- elif lon_acc_roc > 0 and lon_acc_roc < -ip_dec_roc:
- return 1
- elif lon_acc_roc < 0 and lon_acc_roc > ip_dec_roc:
- return -1
- def _slam_brake_process(self, lon_acc, ip_dec):
- if lon_acc - ip_dec < 0:
- return 1
- else:
- return 0
- def _slam_accelerate_process(self, lon_acc, ip_acc):
- if lon_acc - ip_acc > 0:
- return 1
- else:
- return 0
- def _cadence_process_new(self, lon_acc, ip_acc, ip_dec):
- if abs(lon_acc) < 1 or lon_acc > ip_acc or lon_acc < ip_dec:
- return np.nan
- # elif abs(lon_acc_roc) == 0:
- elif abs(lon_acc) == 0:
- return 0
- elif lon_acc > 0 and lon_acc < ip_acc:
- return 1
- elif lon_acc < 0 and lon_acc > ip_dec:
- return -1
- def _cadence_detector(self):
- """
- # 加速度突变:先加后减,先减后加,先加然后停,先减然后停
- # 顿挫:2s内多次加速度变化率突变
- # 求出每一个特征点,然后提取,然后将每一个特征点后面的2s做一个窗口,统计频率,避免无效运算
- # 将特征点筛选出来
- # 将特征点时间作为聚类标准,大于1s的pass,小于等于1s的聚类到一个分组
- # 去掉小于3个特征点的分组
- """
- # data = self.ego_df[['simTime', 'simFrame', 'lon_acc_roc', 'cadence']].copy()
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'lon_acc_roc', 'cadence']].copy()
- time_list = data['simTime'].values.tolist()
- data = data[data['cadence'] != np.nan]
- data['cadence_diff'] = data['cadence'].diff()
- data.dropna(subset='cadence_diff', inplace=True)
- data = data[data['cadence_diff'] != 0]
- t_list = data['simTime'].values.tolist()
- f_list = data['simFrame'].values.tolist()
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not sub_group_time or t_list[i] - t_list[i - 1] <= 1: # 特征点相邻一秒内的,算作同一组顿挫
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 1] # 有一次特征点则算作一次顿挫
- # group_frame = [g for g in group_frame if len(g) >= 1]
- # 输出图表值
- cadence_time = [[g[0], g[-1]] for g in group_time]
- # cadence_frame = [[g[0], g[-1]] for g in group_frame]
- # 将顿挫组的起始时间为组重新统计时间
- cadence_time_list = [time for pair in cadence_time for time in time_list if pair[0] <= time <= pair[1]]
- # stre_list = []
- freq_list = []
- for g in group_time:
- # calculate strength
- g_df = data[data['simTime'].isin(g)]
- # strength = g_df['lon_acc'].abs().mean()
- # stre_list.append(strength)
- # calculate frequency
- cnt = len(g)
- t_start = g_df['simTime'].iloc[0]
- t_end = g_df['simTime'].iloc[-1]
- t_delta = t_end - t_start
- frequency = cnt / t_delta
- freq_list.append(frequency)
- self.cadence_count = len(freq_list)
- # cadence_stre = sum(stre_list) / len(stre_list) if stre_list else 0
- return cadence_time_list
- def _slam_brake_detector(self):
- # 统计急刹全为1的分段的个数,记录分段开头的frame_ID
- # data = self.ego_df[['simTime', 'simFrame', 'lon_acc_roc', 'ip_dec_roc', 'slam_brake']].copy()
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'lon_acc_roc', 'ip_dec', 'slam_brake']].copy()
- # data['slam_diff'] = data['slam_brake'].diff()
- # res_df = data[data['slam_diff'] == 1]
- res_df = data[data['slam_brake'] == 1]
- t_list = res_df['simTime'].values
- f_list = res_df['simFrame'].values.tolist()
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not sub_group_time or f_list[i] - f_list[i - 1] <= 1: # 连续帧的算作同一组急刹
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 2] # 达到两帧算作一次急刹
- # group_frame = [g for g in group_frame if len(g) >= 2]
- time_list = [element for sublist in group_time for element in sublist]
- self.slam_brake_count = len(group_time) # / self.mileage # * 1000000
- return time_list
- def _slam_accel_detector(self):
- # 统计急刹全为1的分段的个数,记录分段开头的frame_ID
- # data = self.ego_df[['simTime', 'simFrame', 'lon_acc_roc', 'ip_acc_roc', 'slam_accel']].copy()
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'ip_acc', 'slam_accel']].copy()
- # data['slam_diff'] = data['slam_accel'].diff()
- # res_df = data.loc[data['slam_diff'] == 1]
- res_df = data.loc[data['slam_accel'] == 1]
- t_list = res_df['simTime'].values
- f_list = res_df['simFrame'].values.tolist()
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not group_time or f_list[i] - f_list[i - 1] <= 1: # 连续帧的算作同一组急加速
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 2]
- # group_frame = [g for g in group_frame if len(g) >= 2]
- time_list = [element for sublist in group_time for element in sublist]
- self.slam_accel_count = len(group_time) # / self.mileage # * 1000000
- return time_list
- def _speed_instruction_jump_detector(self):
- data = self.ego_df[['simTime', 'simFrame', 'cmd_lon_v', 'cmd_lon_v_diff', 'cmd_v_jump']].copy()
- # data['slam_diff'] = data['slam_accel'].diff()
- # res_df = data.loc[data['slam_diff'] == 1]
- res_df = data.loc[data['cmd_v_jump'] == 1]
- t_list = res_df['simTime'].values
- f_list = res_df['simFrame'].values.tolist()
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not group_time or f_list[i] - f_list[i - 1] <= 10: # 连续帧的算作同一组跳变
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 2]
- # group_frame = [g for g in group_frame if len(g) >= 2]
- time_list = [element for sublist in group_time for element in sublist]
- self.speed_instruction_jump_count = len(group_time) # / self.mileage # * 1000000
- return time_list
- def comf_statistic(self):
- """
- """
- # df = self.ego_df[['simTime', 'cur_diff', 'lon_acc', 'lon_acc_roc', 'accelH']].copy()
- df = self.ego_df[['simTime', 'lon_acc', 'lon_acc_roc', 'accelH']].copy()
- self.zigzag_count_func()
- self.cal_zigzag_strength_strength()
- # if self.zigzag_time_list:
- # zigzag_df = pd.DataFrame(self.zigzag_time_list, columns=['start_time', 'end_time'])
- # zigzag_df = get_frame_with_time(zigzag_df, self.ego_df)
- # zigzag_df['type'] = 'zigzag'
- # self.discomfort_df = pd.concat([self.discomfort_df, zigzag_df], ignore_index=True)
- # discomfort_df = pd.concat([time_df, frame_df], axis=1)
- # self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- zigzag_t_list = []
- # 只有[t_start, t_end]数对,要提取为完整time list
- t_list = df['simTime'].values.tolist()
- for t_start, t_end in self.zigzag_time_list:
- index_1 = t_list.index(t_start)
- index_2 = t_list.index(t_end)
- zigzag_t_list.extend(t_list[index_1:index_2 + 1])
- zigzag_t_list = list(set(zigzag_t_list))
- # shake_t_list = self._shake_detector()
- cadence_t_list = self._cadence_detector()
- slam_brake_t_list = self._slam_brake_detector()
- slam_accel_t_list = self._slam_accel_detector()
- speed_instruction_jump_t_list = self._speed_instruction_jump_detector()
- discomfort_time_list = zigzag_t_list + cadence_t_list + slam_brake_t_list + slam_accel_t_list + speed_instruction_jump_t_list
- discomfort_time_list = sorted(discomfort_time_list) # 排序
- discomfort_time_list = list(set(discomfort_time_list)) # 去重
- time_diff = self.time_list[3] - self.time_list[2]
- # time_diff = 0.4
- self.discomfort_duration = len(discomfort_time_list) * time_diff
- self.count_dict = {
- "zigzag": self.zigzag_count,
- # "shake": self.shake_count,
- "cadence": self.cadence_count,
- "slamBrake": self.slam_brake_count,
- "slamAccelerate": self.slam_accel_count,
- "speedInstructionJump": self.speed_instruction_jump_count
- }
- tmp_comf_arr = [self.zigzag_count, self.cadence_count, self.slam_brake_count, self.slam_accel_count,
- self.speed_instruction_jump_count]
- self.discomfort_count = sum(tmp_comf_arr)
- comf_arr = [tmp_comf_arr]
- return comf_arr
- # def _nan_detect(self, num):
- # if math.isnan(num):
- # return 0
- # return num
- def comf_score_new(self):
- arr_comf = self.comf_statistic()
- print("\n[平顺性表现及得分情况]")
- print("平顺性各指标值:", [[round(num, 2) for num in row] for row in arr_comf])
- arr_comf = np.array(arr_comf)
- score_model = self.scoreModel(self.kind_list, self.optimal_list, self.multiple_list, arr_comf)
- score_sub = score_model.cal_score()
- score_metric = list(map(lambda x: 80 if np.isnan(x) else x, score_sub))
- metric_list = [x for x in self.metric_list if x in self.config.builtinMetricList]
- score_metric_dict = {key: value for key, value in zip(metric_list, score_metric)}
- # custom_metric_list = list(self.customMetricParam.keys())
- # for metric in custom_metric_list:
- # value = self.custom_data[metric]['value']
- # param_list = self.customMetricParam[metric]
- # score = self.custom_metric_score(metric, value, param_list)
- # score_metric_dict[metric] = round(score, 2)
- # score_metric_dict = {key: score_metric_dict[key] for key in self.metric_list}
- # score_metric = list(score_metric_dict.values())
- score_type_dict = {}
- if self.weight_custom: # 自定义权重
- score_metric_with_weight_dict = {key: score_metric_dict[key] * self.weight_dict[key] for key in
- self.weight_dict}
- for type in self.type_list:
- type_score = sum(
- value for key, value in score_metric_with_weight_dict.items() if key in self.metric_dict[type])
- score_type_dict[type] = round(type_score, 2)
- score_type_with_weight_dict = {key: score_type_dict[key] * self.weight_type_dict[key] for key in
- score_type_dict}
- score_comfort = sum(score_type_with_weight_dict.values())
- else: # 客观赋权
- self.weight_list = cal_weight_from_80(score_metric)
- self.weight_dict = {key: value for key, value in zip(self.metric_list, self.weight_list)}
- score_comfort = cal_score_with_priority(score_metric, self.weight_list, self.priority_list)
- for type in self.type_list:
- type_weight = sum(value for key, value in self.weight_dict.items() if key in self.metric_dict[type])
- self.weight_dict = {key: round(value / type_weight, 4) for key, value in self.weight_dict.items() if
- key in self.metric_dict[type]}
- type_score_metric = [value for key, value in score_metric_dict.items() if key in self.metric_dict[type]]
- type_weight_list = [value for key, value in self.weight_dict.items() if key in self.metric_dict[type]]
- type_priority_list = [value for key, value in self.priority_dict.items() if
- key in self.metric_dict[type]]
- type_score = cal_score_with_priority(type_score_metric, type_weight_list, type_priority_list)
- score_type_dict[type] = round(type_score, 2)
- score_comfort = round(score_comfort, 2)
- print("平顺性各指标基准值:", self.optimal_list)
- print(f"平顺性得分为:{score_comfort:.2f}分。")
- print(f"平顺性各类型得分为:{score_type_dict}。")
- print(f"平顺性各指标得分为:{score_metric_dict}。")
- return score_comfort, score_type_dict, score_metric_dict
- def zip_time_pairs(self, zip_list, upper_limit=9999):
- zip_time_pairs = zip(self.time_list, zip_list)
- zip_vs_time = [[x, upper_limit if y > upper_limit else y] for x, y in zip_time_pairs if not math.isnan(y)]
- return zip_vs_time
- def report_statistic(self):
- """
- Returns:
- """
- # report_dict = {
- # "name": "平顺性",
- # "weight": f"{self.weight * 100:.2f}%",
- # "weightDistribution": weight_distribution,
- # "score": score_comfort,
- # "level": grade_comfort,
- # 'discomfortCount': self.discomfort_count,
- # "description1": comf_description1,
- # "description2": comf_description2,
- # "description3": comf_description3,
- # "description4": comf_description4,
- #
- # "comfortLat": lat_dict,
- # "comfortLon": lon_dict,
- #
- # "speData": ego_speed_vs_time,
- # "speMarkLine": discomfort_slices,
- #
- # "accData": lon_acc_vs_time,
- # "accMarkLine": discomfort_acce_slices,
- #
- # "anvData": yawrate_vs_time,
- # "anvMarkLine": discomfort_zigzag_slices,
- #
- # "anaData": yawrate_roc_vs_time,
- # "anaMarkLine": discomfort_zigzag_slices,
- #
- # "curData": [cur_ego_path_vs_time, curvature_vs_time],
- # "curMarkLine": discomfort_shake_slices,
- # }
- # brakePedal_list = self.data_processed.driver_ctrl_data['brakePedal_list']
- # throttlePedal_list = self.data_processed.driver_ctrl_data['throttlePedal_list']
- # steeringWheel_list = self.data_processed.driver_ctrl_data['steeringWheel_list']
- #
- # # common parameter calculate
- # brake_vs_time = self.zip_time_pairs(brakePedal_list, 100)
- # throttle_vs_time = self.zip_time_pairs(throttlePedal_list, 100)
- # steering_vs_time = self.zip_time_pairs(steeringWheel_list)
- report_dict = {
- "name": "平顺性",
- "weight": f"{self.weight * 100:.2f}%",
- # 'discomfortCount': self.discomfort_count,
- }
- score_comfort, score_type_dict, score_metric_dict = self.comf_score_new()
- score_comfort = int(score_comfort) if int(score_comfort) == score_comfort else round(score_comfort, 2)
- grade_comfort = score_grade(score_comfort)
- report_dict["score"] = score_comfort
- report_dict["level"] = grade_comfort
- description = f"· 在平顺性方面,得分{score_comfort}分,表现{grade_comfort},"
- is_good = True
- if any(score_metric_dict[metric] < 80 for metric in self.lon_metric_list):
- is_good = False
- description += "线加速度变化剧烈,"
- tmp = [metric for metric in self.lon_metric_list if score_metric_dict[metric] < 80]
- str_tmp = "、".join(tmp)
- description += f"有{str_tmp}情况,需重点优化。"
- if any(score_metric_dict[metric] < 80 for metric in self.lat_metric_list):
- is_good = False
- description += "角加速度变化剧烈,"
- tmp = [metric for metric in self.lat_metric_list if score_metric_dict[metric] < 80]
- str_tmp = "、".join(tmp)
- description += f"有{str_tmp}情况,需重点优化。"
- if is_good:
- description += f"线加速度和角加速度变化平顺,表现{grade_comfort}。"
- report_dict["description"] = replace_key_with_value(description, self.name_dict)
- # indexes
- description1 = f"最大值:{self.linear_accel_dict['max']}m/s²;" \
- f"最小值:{self.linear_accel_dict['min']}m/s²;" \
- f"平均值:{self.linear_accel_dict['avg']}m/s²"
- description2 = f"最大值:{self.angular_accel_dict['max']}rad/s²;" \
- f"最小值:{self.angular_accel_dict['min']}rad/s²;" \
- f"平均值:{self.angular_accel_dict['avg']}rad/s²"
- description3 = f"次数:{self.speed_instruction_jump_count}次; " \
- f"最大值:{self.speed_instruction_dict['max']}m/s;" \
- f"最小值:{self.speed_instruction_dict['min']}m/s;" \
- f"平均值:{self.speed_instruction_dict['avg']}m/s"
- linearAccelerate_index = {
- "weight": self.weight_type_dict['comfortLon'],
- "score": score_type_dict['comfortLon'],
- "description": description1
- }
- angularAccelerate_index = {
- "weight": self.weight_type_dict['comfortLat'],
- "score": score_type_dict['comfortLat'],
- "description": description2
- }
- speedInstruction_index = {
- "weight": self.weight_type_dict['comfortSpeed'],
- "score": score_type_dict['comfortSpeed'],
- "description": description3
- }
- indexes_dict = {
- "comfortLat": linearAccelerate_index,
- "comfortLon": angularAccelerate_index,
- "comfortSpeed": speedInstruction_index
- }
- report_dict["indexes"] = indexes_dict
- # LinearAccelerate.png
- plt.figure(figsize=(12, 3))
- plt.plot(self.time_list, self.accel_list, label='Linear Accelerate')
- plt.xlabel('Time(s)')
- plt.ylabel('Linear Accelerate(m/s^2)')
- plt.legend()
- # 调整布局,消除空白边界
- plt.tight_layout()
- plt.savefig(os.path.join(self.resultPath, "LinearAccelerate.png"))
- plt.close()
- # AngularAccelerate.png
- plt.figure(figsize=(12, 3))
- plt.plot(self.time_list, self.accelH_list, label='Angular Accelerate')
- plt.xlabel('Time(s)')
- plt.ylabel('Angular Accelerate(rad/s^2)')
- plt.legend()
- # 调整布局,消除空白边界
- plt.tight_layout()
- plt.savefig(os.path.join(self.resultPath, "AngularAccelerate.png"))
- plt.close()
- # Speed.png
- plt.figure(figsize=(12, 3))
- plt.plot(self.time_list, self.speed_list, label='Speed')
- plt.xlabel('Time(s)')
- plt.ylabel('Speed(m/s)')
- plt.legend()
- # 调整布局,消除空白边界
- plt.tight_layout()
- plt.savefig(os.path.join(self.resultPath, "Speed.png"))
- plt.close()
- # commandSpeed.png draw
- plt.figure(figsize=(12, 3))
- plt.plot(self.time_list, self.commandSpeed_list, label='commandSpeed')
- plt.xlabel('Time(s)')
- plt.ylabel('commandSpeed(m/s)')
- plt.legend()
- # 调整布局,消除空白边界
- plt.tight_layout()
- plt.savefig(os.path.join(self.resultPath, "CommandSpeed.png"))
- plt.close()
- print(report_dict)
- return report_dict
- # def get_eval_data(self):
- # df = self.eval_data[
- # ['simTime', 'simFrame', 'playerId', 'ip_acc', 'ip_dec', 'slam_brake', 'slam_accel', 'cadence']].copy()
- # return df
|