123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: yangzihao(yangzihao@china-icv.cn)
- @Data: 2023/11/27
- @Last Modified: 2023/11/27
- @Summary: Csv data process functions
- """
- import os
- import numpy as np
- import pandas as pd
- from common import cal_velocity
- from data_info import CsvData
- import matplotlib.pyplot as plt
- class DataProcess(object):
- """
- The data process class. It is a template to get evaluation raw data and process the raw data.
- Attributes:
- """
- def __init__(self, data_path, config):
- self.data_path = data_path
- self.casePath = data_path
- # config info
- self.config = config
- self.safe_config = config.config['safe']
- self.comfort_config = config.config['comfort']
- self.accurate_config = config.config['accurate']
- # data process
- self.ego_df = pd.DataFrame()
- self.object_df = pd.DataFrame()
- self.trajectory_df = pd.DataFrame()
- # self.obj_data = {}
- # self.ego_data = {}
- self.obj_id_list = {}
- self.car_info = {}
- self.report_info = {}
- self.driver_ctrl_data = {}
- self._process()
- def _process(self):
- # self._merge_csv()
- self._read_csv()
- self._columns_process()
- self._draw_track()
- # self._signal_mapping()
- # self.car_info = self._get_car_info(self.object_df)
- # self._compact_data()
- # self._abnormal_detect()
- # self._status_map(self.object_df)
- self._ego_df_process()
- self._object_df_process()
- self.report_info = self._get_report_info(self.ego_df)
- self.driver_ctrl_data = self._get_driver_ctrl_data(self.ego_df)
- def _read_csv(self):
- """
- Read csv files to dataframe.
- """
- # self.object_df = pd.read_csv(os.path.join(self.data_path, 'merged_ObjState.csv'))
- self.ego_df = pd.read_csv(os.path.join(self.data_path, 'EgoState_pji.csv'))
- self.object_df = pd.read_csv(os.path.join(self.data_path, 'objects.csv'))
- self.trajectory_df = pd.read_csv(os.path.join(self.data_path, 'trajectory_pji.csv'))
- # self.driver_ctrl_df = pd.read_csv(os.path.join(self.data_path, 'DriverCtrl.csv'))
- # self.road_mark_df = pd.read_csv(os.path.join(self.data_path, 'RoadMark.csv'))
- # self.road_pos_df = pd.read_csv(os.path.join(self.data_path, 'RoadPos.csv'))
- # self.traffic_light_df = pd.read_csv(os.path.join(self.data_path, 'TrafficLight.csv'))
- # self.traffic_signal_df = pd.read_csv(os.path.join(self.data_path, 'TrafficSign.csv'))
- # self.lane_info_df = pd.read_csv(os.path.join(self.data_path, 'LaneInfo.csv')).drop_duplicates()
- # self.status_df = pd.read_csv(os.path.join(self.data_path, 'VehicleState.csv'))
- # self.vehicle_sys_df = pd.read_csv(
- # os.path.join(self.data_path, 'VehicleSystems.csv')).drop_duplicates() # 车灯信息
- def _columns_process(self):
- # ego data process
- self.ego_df.rename(columns={"speed_linear": "lon_v", "speed_angular": "speedH", "cmd_speed_linear": "cmd_lon_v",
- "cmd_speed_angular": "cmd_speedH", }, inplace=True)
- self.ego_df['playerId'] = 1
- self.ego_df['lat_v'] = 0
- self.ego_df['lat_acc'] = 0
- # self.ego_df['lon_acc'] = 0
- # object data process
- self.object_df.rename(columns={"simtime": "simTime", "FrameID": "simFrame", "id": "playerId",
- "poseX": "posX", "poseY": "posY", "poseZ": "posZ",
- "velocity_linear_x": "lon_v", "velocity_linear_y": "lat_v",
- "velocity_angular_x": "speedH",
- "acceleration_linear_x": "lon_acc", "acceleration_linear_y": "lat_acc",
- "acceleration_angular_x": "accelH"}, inplace=True)
- # Time, simtime, FrameID, id, HeadingAngle, poseX, poseY, poseZ, label, dimX, dimY, dimZ,
- # velocity_linear_x, velocity_linear_y, velocity_linear_z, velocity_angular_x, velocity_angular_y, velocity_angular_z,
- # acceleration_linear_x, acceleration_linear_y, acceleration_linear_z, acceleration_angular_x, acceleration_angular_y, acceleration_angular_z
- def _draw_track(self):
- """
- """
- df = self.ego_df.copy()
- plt.scatter(df['posX'], df['posY'], c=df['simTime'], s=0.1)
- plt.axis('equal')
- # 添加坐标轴标签和标题
- plt.xlabel('posX')
- plt.ylabel('posY')
- plt.title('Trajectory')
- # 显示图形
- plt.savefig(os.path.join(self.casePath, "./track.png"))
- plt.close()
- def _get_car_info(self, df):
- """
- Args:
- df:
- Returns:
- """
- first_row = df[df['playerId'] == 1].iloc[0].to_dict()
- length = first_row['dimX']
- width = first_row['dimY']
- height = first_row['dimZ']
- offset = first_row['offX']
- car_info = {
- "length": length,
- "width": width,
- "height": height,
- "offset": offset
- }
- return car_info
- def _mileage_cal(self, df):
- """
- Calculate mileage of given df.
- Args:
- df: A dataframe of driving data.
- Returns:
- mileage: A float of the mileage(meter) of the driving data.
- """
- travelDist = df['traveledDist'].values.tolist()
- travelDist = [x for x in travelDist if not np.isnan(x)]
- # mile_start = df['travelDist'].iloc[0]
- mile_start = travelDist[0]
- mile_end = travelDist[-1]
- mileage = mile_end - mile_start
- return mileage
- def _duration_cal(self, df):
- """
- Calculate duration of given df.
- Args:
- df: A dataframe of driving data.
- Returns:
- duration: A float of the duration(second) of the driving data.
- """
- time_start = df['simTime'].iloc[0]
- time_end = df['simTime'].iloc[-1]
- duration = time_end - time_start
- return duration
- def _get_report_info(self, df):
- """
- Get report infomation from dataframe.
- Args:
- df: A dataframe of driving data.
- Returns:
- report_info: A dict of report infomation.
- """
- mileage = self._mileage_cal(df)
- duration = self._duration_cal(df)
- report_info = {
- "mileage": mileage,
- "duration": duration
- }
- return report_info
- def _ego_df_process(self):
- # ego_df process
- self.ego_df['time_diff'] = self.ego_df['simTime'].diff()
- self.ego_df['lon_v_diff'] = self.ego_df['lon_v'].diff()
- self.ego_df['lon_acc'] = self.ego_df['lon_v_diff'] / self.ego_df['time_diff']
- data = self.ego_df.copy()
- data.rename(
- columns={"speedY": "lat_v", "speedX": "lon_v", "accelY": "lat_acc", "accelX": "lon_acc", "dimZ": "speedH"},
- inplace=True)
- # calculate common parameters
- # data['lat_v'] = data['speedX'] * np.sin(data['posH']) * -1 + data['speedY'] * np.cos(data['posH'])
- # data['lon_v'] = data['speedX'] * np.cos(data['posH']) + data['speedY'] * np.sin(data['posH'])
- data['v'] = data.apply(lambda row: cal_velocity(row['lat_v'], row['lon_v']), axis=1)
- data['time_diff'] = data['simTime'].diff()
- data['avg_speed'] = (data['v'] + data['v'].shift()) / 2 # 计算每个时间间隔的平均速度
- data['distance_increment'] = data['avg_speed'] * data['time_diff'] # 计算每个时间间隔的距离增量
- # 计算当前里程
- data['traveledDist'] = data['distance_increment'].cumsum() # .cumsum()返回累计和列表
- data['traveledDist'] = data['traveledDist'].fillna(0)
- # calculate acceleraton components
- # data['lat_acc'] = data['accelX'] * np.sin(data['posH']) * -1 + data['accelY'] * np.cos(data['posH'])
- # data['lon_acc'] = data['accelX'] * np.cos(data['posH']) + data['accelY'] * np.sin(data['posH'])
- # data['accel'] = data.apply(lambda row: cal_velocity(row['lat_acc'], row['lon_acc']), axis=1)
- data['accel'] = data['lon_acc']
- data['lat_acc_diff'] = data['lat_acc'].diff()
- data['lon_acc_diff'] = data['lon_acc'].diff()
- data['speedH_diff'] = data['speedH'].diff()
- data['time_diff'] = data['simTime'].diff()
- # self.obj_data['avg_speed'] = (self.obj_data['v'] + self.obj_data['v'].shift()) / 2 # 计算每个时间间隔的平均速度
- # self.obj_data['distance_increment'] = self.obj_data['avg_speed'] * self.obj_data['time_diff'] / 3.6 # 计算每个时间间隔的距离增量
- #
- # # 计算当前里程
- # self.obj_data['travelDist'] = self.obj_data['distance_increment'].cumsum()
- # self.obj_data['travelDist'] = self.obj_data['travelDist'].fillna(0)
- data['lat_acc_roc'] = data['lat_acc_diff'] / data['time_diff']
- data['lon_acc_roc'] = data['lon_acc_diff'] / data['time_diff']
- data['accelH'] = data['speedH_diff'] / data['time_diff']
- self.ego_df = data.copy()
- def _object_df_process(self):
- """
- Process the data of object dataframe. Save the data groupby object_ID.
- Returns:
- No returns.
- """
- self.obj_id_list = list(set(self.object_df.playerId))
- # self.object_df = pd.merge(self.object_df, self.ego_df, how='left')
- # calculate respective parameters
- # for obj_id, obj_data in self.object_df.groupby("playerId"):
- # self.obj_data[obj_id] = obj_data
- # self.obj_data[obj_id]['lat_acc_diff'] = self.obj_data[obj_id]['lat_acc'].diff()
- # self.obj_data[obj_id]['lon_acc_diff'] = self.obj_data[obj_id]['lon_acc'].diff()
- # self.obj_data[obj_id]['speedH_diff'] = self.obj_data[obj_id]['speedH'].diff()
- #
- # self.obj_data[obj_id]['time_diff'] = self.obj_data[obj_id]['simTime'].diff()
- # # self.obj_data['avg_speed'] = (self.obj_data['v'] + self.obj_data['v'].shift()) / 2 # 计算每个时间间隔的平均速度
- # # self.obj_data['distance_increment'] = self.obj_data['avg_speed'] * self.obj_data['time_diff'] / 3.6 # 计算每个时间间隔的距离增量
- # #
- # # # 计算当前里程
- # # self.obj_data['travelDist'] = self.obj_data['distance_increment'].cumsum()
- # # self.obj_data['travelDist'] = self.obj_data['travelDist'].fillna(0)
- #
- # self.obj_data[obj_id]['lat_acc_roc'] = self.obj_data[obj_id]['lat_acc_diff'] / self.obj_data[obj_id][
- # 'time_diff']
- # self.obj_data[obj_id]['lon_acc_roc'] = self.obj_data[obj_id]['lon_acc_diff'] / self.obj_data[obj_id][
- # 'time_diff']
- # self.obj_data[obj_id]['accelH'] = self.obj_data[obj_id]['speedH_diff'] / self.obj_data[obj_id][
- # 'time_diff']
- # get object id list
- # self.obj_id_list = list(self.obj_data.keys())
- # self.ego_data = self.obj_data[1]
- def _get_driver_ctrl_data(self, df):
- """
- Process and get drive ctrl information. Such as brake pedal, throttle pedal and steering wheel.
- Args:
- df: A dataframe of driver ctrl data.
- Returns:
- driver_ctrl_data: A dict of driver ctrl info.
- """
- time_list = df['simTime'].values.tolist()
- frame_list = df['simFrame'].values.tolist()
- # df['brakePedal'] = df['brakePedal'] * 100
- # brakePedal_list = df['brakePedal'].values.tolist()
- # df['throttlePedal'] = df['throttlePedal'] * 100
- # throttlePedal_list = df['throttlePedal'].values.tolist()
- # steeringWheel_list = df['steeringWheel'].values.tolist()
- driver_ctrl_data = {
- "time_list": time_list,
- "frame_list": frame_list,
- # "brakePedal_list": brakePedal_list,
- # "throttlePedal_list": throttlePedal_list,
- # "steeringWheel_list": steeringWheel_list
- }
- return driver_ctrl_data
|