|
@@ -0,0 +1,267 @@
|
|
|
|
+#!/usr/bin/env python
|
|
|
|
+# -*- coding: utf-8 -*-
|
|
|
|
+##################################################################
|
|
|
|
+#
|
|
|
|
+# Copyright (c) 2023 CICV, Inc. All Rights Reserved
|
|
|
|
+#
|
|
|
|
+##################################################################
|
|
|
|
+"""
|
|
|
|
+@Authors: zhanghaiwen, yangzihao
|
|
|
|
+@Data: 2024/02/21
|
|
|
|
+@Last Modified: 2024/02/21
|
|
|
|
+@Summary: The template of custom indicator.
|
|
|
|
+"""
|
|
|
|
+
|
|
|
|
+"""
|
|
|
|
+设计思路:
|
|
|
|
+
|
|
|
|
+"""
|
|
|
|
+
|
|
|
|
+import math
|
|
|
|
+import pandas as pd
|
|
|
|
+import numpy as np
|
|
|
|
+from common import zip_time_pairs, continuous_group, get_status_active_data, _cal_THW, _cal_v_ego_projection
|
|
|
|
+from log import logger
|
|
|
|
+
|
|
|
|
+"""import functions"""
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+# custom metric codes
|
|
|
|
+Max_Time = 1000
|
|
|
|
+class CustomMetric(object):
|
|
|
|
+ def __init__(self, all_data, case_name):
|
|
|
|
+ self.data = all_data
|
|
|
|
+ self.optimal_dict = self.data.config
|
|
|
|
+ self.status_trigger_dict = self.data.status_trigger_dict
|
|
|
|
+ self.case_name = case_name
|
|
|
|
+ self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
|
|
|
|
+ self.graph_list = []
|
|
|
|
+
|
|
|
|
+ self.df = pd.DataFrame()
|
|
|
|
+ self.ego_df = pd.DataFrame()
|
|
|
|
+ self.df_ica = pd.DataFrame()
|
|
|
|
+
|
|
|
|
+ # self.stable_start_time_THW = None
|
|
|
|
+ self.stable_average_THW = None
|
|
|
|
+ self.rise_time_THW = None
|
|
|
|
+
|
|
|
|
+ self.result = {
|
|
|
|
+ "name": "跟车上升时间",
|
|
|
|
+ "value": [],
|
|
|
|
+ # "weight": [],
|
|
|
|
+ "tableData": {
|
|
|
|
+ "avg": "", # 平均值,或指标值
|
|
|
|
+ "max": "",
|
|
|
|
+ "min": ""
|
|
|
|
+ },
|
|
|
|
+ "reportData": {
|
|
|
|
+ "name": "跟车上升时间(s)",
|
|
|
|
+ # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
|
|
|
|
+ "data": [],
|
|
|
|
+ "markLine": [],
|
|
|
|
+ "range": [],
|
|
|
|
+ },
|
|
|
|
+ "statusFlag": {}
|
|
|
|
+ }
|
|
|
|
+ self.run()
|
|
|
|
+ print(f"跟车上升时间: {self.result['value']}")
|
|
|
|
+
|
|
|
|
+ def data_extract(self):
|
|
|
|
+ self.df = self.data.object_df
|
|
|
|
+ self.ego_df = self.data.ego_data
|
|
|
|
+
|
|
|
|
+ active_time_ranges = self.status_trigger_dict['ICA']['ICA_follow_time']
|
|
|
|
+ self.df_ica = get_status_active_data(active_time_ranges, self.ego_df)
|
|
|
|
+
|
|
|
|
+ # self.df_ica = self.ego_df[self.ego_df['ICA_status'] == "LLC_Follow_Vehicle"].copy() # 数字3对应ICA的Active
|
|
|
|
+ # self.df_ica = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
|
|
|
|
+ # self.df_ica = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
|
|
|
|
+
|
|
|
|
+ if self.df_ica.empty:
|
|
|
|
+ self.result['statusFlag']['function_ICA'] = False
|
|
|
|
+ else:
|
|
|
|
+ self.result['statusFlag']['function_ICA'] = True
|
|
|
|
+
|
|
|
|
+ def _get_first_change_index_THW(self):
|
|
|
|
+ """
|
|
|
|
+ 获取DataFrame中'set_headway_time'列首次发生变化的索引值。
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ 无参数。
|
|
|
|
+
|
|
|
|
+ Returns:
|
|
|
|
+ Union[int, None]: 如果存在变化,则返回首次发生变化的索引值(int类型),否则返回None。
|
|
|
|
+
|
|
|
|
+ """
|
|
|
|
+ change_indices = self.df_ica[self.df_ica['set_headway_time'] != self.df_ica['set_headway_time'].shift()].index
|
|
|
|
+ if not change_indices.empty:
|
|
|
|
+ first_change_index = change_indices.min()
|
|
|
|
+ else:
|
|
|
|
+ first_change_index = None
|
|
|
|
+ return first_change_index
|
|
|
|
+
|
|
|
|
+ def _find_stable_THW(self, window_size, percent_deviation, set_value):
|
|
|
|
+ """
|
|
|
|
+ 在给定的数据窗口中查找稳定跟车时距离THW,并计算该段内THW的平均值。
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ window_size (int): 窗口大小,表示在数据中寻找稳定段时考虑的连续数据点数量。
|
|
|
|
+ percent_deviation (float): THW值相对于设定值的允许偏差百分比。
|
|
|
|
+ set_value (float): THW的设定值。
|
|
|
|
+
|
|
|
|
+ Returns:
|
|
|
|
+ None
|
|
|
|
+
|
|
|
|
+ """
|
|
|
|
+ ego_x = self.df_ica[self.df_ica['playerId'] == 1]['posX'].reset_index(drop=True)
|
|
|
|
+ ego_y = self.df_ica[self.df_ica['playerId'] == 1]['posY'].reset_index(drop=True)
|
|
|
|
+ obj_x = self.df_ica[self.df_ica['playerId'] == 2]['posX'].reset_index(drop=True)
|
|
|
|
+ obj_y = self.df_ica[self.df_ica['playerId'] == 2]['posY'].reset_index(drop=True)
|
|
|
|
+
|
|
|
|
+ ego_speedx = self.df_ica[self.df_ica['playerId'] == 1]['speedX'].reset_index(drop=True)
|
|
|
|
+ ego_speedy = self.df_ica[self.df_ica['playerId'] == 1]['speedY'].reset_index(drop=True)
|
|
|
|
+ obj_speedx = self.df_ica[self.df_ica['playerId'] == 2]['speedX'].reset_index(drop=True)
|
|
|
|
+ obj_speedy = self.df_ica[self.df_ica['playerId'] == 2]['speedY'].reset_index(drop=True)
|
|
|
|
+
|
|
|
|
+ dx = obj_x - ego_x
|
|
|
|
+ dy = obj_y - ego_y
|
|
|
|
+ vx = obj_speedx - ego_speedx
|
|
|
|
+ vy = obj_speedy - ego_speedy
|
|
|
|
+ dist = np.sqrt(dx ** 2 + dy ** 2)
|
|
|
|
+ ego_v_projection_in_dist = _cal_v_ego_projection(dx, dy, ego_speedx, ego_speedy)
|
|
|
|
+ thw1 = _cal_THW(dist, ego_v_projection_in_dist)
|
|
|
|
+ thw = thw1.tolist()
|
|
|
|
+ THW = []
|
|
|
|
+ for item in thw:
|
|
|
|
+ THW.append(item)
|
|
|
|
+ THW.append(item)
|
|
|
|
+ self.df_ica['THW'] = THW
|
|
|
|
+
|
|
|
|
+ THW = self.df_ica['THW'].values
|
|
|
|
+ deviation = set_value * (percent_deviation / 100)
|
|
|
|
+ stable_start = None
|
|
|
|
+ stable_average_THW = None
|
|
|
|
+
|
|
|
|
+ for i in range(len(THW) - window_size + 1):
|
|
|
|
+ window_data = THW[i:i + window_size]
|
|
|
|
+
|
|
|
|
+ if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
|
|
|
|
+ if stable_start is None:
|
|
|
|
+ stable_start = i
|
|
|
|
+ stable_end = i + window_size - 1
|
|
|
|
+ stable_average_THW = np.mean(window_data)
|
|
|
|
+
|
|
|
|
+ j = i + window_size
|
|
|
|
+ while j < len(THW) - window_size + 1:
|
|
|
|
+ next_window_data = THW[j:j + window_size]
|
|
|
|
+
|
|
|
|
+ if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
|
|
|
|
+ stable_end = j + window_size - 1
|
|
|
|
+ stable_average_THW = (stable_average_THW * (j - stable_start) + sum(next_window_data)) / (
|
|
|
|
+ j - stable_start + window_size)
|
|
|
|
+ j += window_size
|
|
|
|
+ else:
|
|
|
|
+ stable_start = j + window_size - 1
|
|
|
|
+ stable_end = i + window_size - 1
|
|
|
|
+ stable_average_THW = np.mean(window_data)
|
|
|
|
+ break
|
|
|
|
+
|
|
|
|
+ # self.stable_start_time_THW = self.df_ica['simTime'].iloc[stable_start]
|
|
|
|
+ self.stable_average_THW = stable_average_THW
|
|
|
|
+
|
|
|
|
+ def _find_closest_time_stamp_THW(self, df, target_THW, start_index):
|
|
|
|
+ """
|
|
|
|
+ 在DataFrame中找到与目标THW值最接近的时间戳。
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ df (pandas.DataFrame): 包含'THW'和'simTime'列的DataFrame,其中'THW'表示目标变量,'simTime'表示时间戳。
|
|
|
|
+ target_THW (float): 目标THW值。
|
|
|
|
+ start_index (int): 开始搜索的索引位置(不包含)。
|
|
|
|
+
|
|
|
|
+ Returns:
|
|
|
|
+ pandas.Timestamp: 与目标THW值最接近的时间戳。
|
|
|
|
+
|
|
|
|
+ """
|
|
|
|
+ subset = df.loc[start_index + 1:]
|
|
|
|
+ THW_diff = np.abs(subset['THW'] - target_THW)
|
|
|
|
+ closest_index = THW_diff.idxmin()
|
|
|
|
+ closest_timestamp = subset.loc[closest_index, 'simTime']
|
|
|
|
+ return closest_timestamp
|
|
|
|
+
|
|
|
|
+ def data_analyze(self):
|
|
|
|
+ """
|
|
|
|
+ 计算巡航时从初THW到达稳定THW的90%的所需时间(rise time)。
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ 无。
|
|
|
|
+
|
|
|
|
+ Returns:
|
|
|
|
+ 无返回值,但会设置实例属性self.rise_time_THW为计算得到的rise time。
|
|
|
|
+
|
|
|
|
+ """
|
|
|
|
+ if self.df_ica.empty:
|
|
|
|
+ self.result['value'] = [0.0]
|
|
|
|
+ print(f"Rise time: 0")
|
|
|
|
+ else:
|
|
|
|
+ first_change_index = self._get_first_change_index_THW()
|
|
|
|
+
|
|
|
|
+ set_headway_time = self.df_ica.loc[first_change_index, 'set_headway_time']
|
|
|
|
+ self._find_stable_THW(window_size=4, percent_deviation=5, set_value=set_headway_time)
|
|
|
|
+
|
|
|
|
+ initial_THW = self.df_ica.loc[first_change_index, 'THW']
|
|
|
|
+ if self.stable_average_THW:
|
|
|
|
+ target_THW_90 = initial_THW + (self.stable_average_THW - initial_THW) * 0.9
|
|
|
|
+ target_THW_10 = initial_THW + (self.stable_average_THW - initial_THW) * 0.1
|
|
|
|
+
|
|
|
|
+ timestamp_at_10 = self._find_closest_time_stamp_THW(self.df_ica, target_THW_10, first_change_index)
|
|
|
|
+ timestamp_at_90 = self._find_closest_time_stamp_THW(self.df_ica, target_THW_90, first_change_index)
|
|
|
|
+
|
|
|
|
+ print(f"Closest speed at 10% range from set speed: {timestamp_at_10}")
|
|
|
|
+ print(f"Closest speed at 90% range from set speed: {timestamp_at_90}")
|
|
|
|
+
|
|
|
|
+ self.rise_time_THW = timestamp_at_90 - timestamp_at_10
|
|
|
|
+ else:
|
|
|
|
+ self.rise_time_THW = Max_Time
|
|
|
|
+ self.result['value'] = [round(self.rise_time_THW, 3)]
|
|
|
|
+ print(f"Rise time: {self.rise_time_THW}")
|
|
|
|
+
|
|
|
|
+ def markline_statistic(self):
|
|
|
|
+ pass
|
|
|
|
+
|
|
|
|
+ def report_data_statistic(self):
|
|
|
|
+ # time_list = self.ego_df['simTime'].values.tolist()
|
|
|
|
+ # graph_list = [x for x in self.graph_list if not np.isnan(x)]
|
|
|
|
+ self.result['tableData']['avg'] = self.result['value'][0] if not self.df_ica.empty else '-'
|
|
|
|
+ self.result['tableData']['max'] = '-'
|
|
|
|
+ self.result['tableData']['min'] = '-'
|
|
|
|
+
|
|
|
|
+ # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
|
|
|
|
+ self.result['reportData']['data'] = []
|
|
|
|
+
|
|
|
|
+ # self.markline_statistic()
|
|
|
|
+ # markline_slices = self.markline_df.to_dict('records')
|
|
|
|
+ self.result['reportData']['markLine'] = []
|
|
|
|
+
|
|
|
|
+ self.result['reportData']['range'] = [0, 1.2]
|
|
|
|
+
|
|
|
|
+ def run(self):
|
|
|
|
+ # logger.info(f"Custom metric run:[{self.result['name']}].")
|
|
|
|
+ logger.info(f"[case:{self.case_name}] Custom metric:[rise_time_THW:{self.result['name']}] evaluate.")
|
|
|
|
+
|
|
|
|
+ try:
|
|
|
|
+ self.data_extract()
|
|
|
|
+ except Exception as e:
|
|
|
|
+ logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
|
|
|
|
+
|
|
|
|
+ try:
|
|
|
|
+ self.data_analyze()
|
|
|
|
+ except Exception as e:
|
|
|
|
+ logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
|
|
|
|
+
|
|
|
|
+ try:
|
|
|
|
+ self.report_data_statistic()
|
|
|
|
+ except Exception as e:
|
|
|
|
+ logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
|
|
|
|
+
|
|
|
|
+# if __name__ == "__main__":
|
|
|
|
+# pass
|