cicv_LKA_03_heading_deviation_max.py 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhangyu
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. 最大航向偏差角
  17. """
  18. import math
  19. import pandas as pd
  20. import numpy as np
  21. from common import zip_time_pairs, continuous_group, get_status_active_data
  22. from log import logger
  23. """import functions"""
  24. # custom metric codes
  25. class CustomMetric(object):
  26. def __init__(self, all_data, case_name):
  27. self.data = all_data
  28. self.optimal_dict = self.data.config
  29. self.status_trigger_dict = self.data.status_trigger_dict
  30. self.case_name = case_name
  31. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  32. self.df = pd.DataFrame()
  33. self.ego_df = pd.DataFrame()
  34. self.df_ego = pd.DataFrame()
  35. self.roadMark_df = pd.DataFrame()
  36. # self.roadPos_df = pd.DataFrame()
  37. self.time_list_follow = list()
  38. self.frame_list_follow = list()
  39. self.dist_list = list()
  40. self.dist_deviation_list = list()
  41. self.dist_deviation_list_full_time = list()
  42. self.result = {
  43. "name": "最大航向角偏差",
  44. "value": [],
  45. # "weight": [],
  46. "tableData": {
  47. "avg": "", # 平均值,或指标值
  48. "max": "",
  49. "min": ""
  50. },
  51. "reportData": {
  52. "name": "最大航向角偏差(rad)",
  53. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  54. "data": [],
  55. "markLine": [],
  56. "range": [],
  57. },
  58. "statusFlag": {}
  59. }
  60. self.run()
  61. print(f"指标03: LKA最大航向角偏差: {self.result['value']}")
  62. def data_extract(self):
  63. self.df = self.data.object_df
  64. self.ego_df = self.data.object_df[self.data.object_df.playerId == 1]
  65. # new active get code
  66. active_time_ranges = self.status_trigger_dict['LKA']['LKA_active_time']
  67. self.df_ego = get_status_active_data(active_time_ranges, self.ego_df)
  68. self.roadMark_df = get_status_active_data(active_time_ranges, self.data.road_mark_df)
  69. if self.df_ego.empty:
  70. self.result['statusFlag']['function_LKA'] = False
  71. else:
  72. self.result['statusFlag']['function_LKA'] = True
  73. def dist(self, x1, y1, x2, y2):
  74. dis = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
  75. return dis
  76. def Compute_nearby_distance_to_lane_boundary(self, x, width_ego):
  77. if x.lateralDist < abs(x.right_lateral_distance):
  78. return x.lateralDist - width_ego / 2
  79. else:
  80. return abs(x.right_lateral_distance) - width_ego / 2
  81. def data_analyze(self):
  82. # 提取自车宽度
  83. ego_df = self.df_ego.reset_index(drop=True)
  84. road_mark_df = self.roadMark_df
  85. # 左车道线曲率,右车道线曲率,求二者平均值,计算车道线曲率,再与自车朝向相减
  86. road_mark_left_df = road_mark_df[road_mark_df.id == 0].reset_index(drop=True)
  87. road_mark_right_df = road_mark_df[road_mark_df.id == 2].reset_index(drop=True)
  88. road_mark_left_df['curvHor_left'] = road_mark_left_df['curvHor']
  89. road_mark_left_df['curvHor_right'] = road_mark_right_df['curvHor']
  90. road_mark_left_df['curvHor_middle'] = road_mark_left_df[['curvHor_left', 'curvHor_right']].apply( \
  91. lambda x: (x['curvHor_left'] + x['curvHor_right']) / 2, axis=1)
  92. ego_df['curvHor_middle'] = road_mark_left_df['curvHor_middle']
  93. ego_df['heading_deviation_abs'] = ego_df[['curvHor_middle', 'posH']].apply( \
  94. lambda x: abs(x['posH'] - x['curvHor_middle']), axis=1)
  95. row_with_max_value = max(ego_df['heading_deviation_abs'])
  96. self.result['value'] = [row_with_max_value]
  97. self.time_list_follow = ego_df['simTime'].values.tolist()
  98. self.frame_list_follow = ego_df['simFrame'].values.tolist()
  99. self.dist_deviation_list = ego_df['heading_deviation_abs'].values.tolist()
  100. def markline_statistic(self):
  101. unfunc_df = pd.DataFrame({'simTime': self.time_list_follow, 'simFrame': self.frame_list_follow,
  102. 'dist_deviation': self.dist_deviation_list})
  103. unfunc_df = unfunc_df[unfunc_df['simFrame'] > 1]
  104. # v_df = unfunc_df[unfunc_df['dist_deviation'] > 0]
  105. v_df = unfunc_df
  106. v_df = v_df[['simTime', 'simFrame', 'dist_deviation']]
  107. v_follow_df = continuous_group(v_df)
  108. v_follow_df['type'] = "LKA"
  109. self.markline_df = pd.concat([self.markline_df, v_follow_df], ignore_index=True)
  110. def report_data_statistic(self):
  111. time_list = self.ego_df['simTime'].values.tolist()
  112. graph_list = [x for x in self.dist_deviation_list if not np.isnan(x)]
  113. self.result['tableData']['avg'] = f'{np.mean(graph_list):.3f}' if graph_list else 0
  114. self.result['tableData']['max'] = f'{max(graph_list):.3f}' if graph_list else 0
  115. self.result['tableData']['min'] = f'{min(graph_list):.3f}' if graph_list else 0
  116. zip_vs_time = zip_time_pairs(time_list, self.dist_deviation_list)
  117. self.result['reportData']['data'] = zip_vs_time
  118. self.markline_statistic()
  119. markline_slices = self.markline_df.to_dict('records')
  120. self.result['reportData']['range'] = f"[-1.875, 1.875]"
  121. def run(self):
  122. logger.info(f"[case:{self.case_name}] Custom metric:[cicv_LKA_03_heading_deviation_max:{self.result['name']}] evaluate.")
  123. try:
  124. self.data_extract()
  125. except Exception as e:
  126. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  127. try:
  128. self.data_analyze()
  129. except Exception as e:
  130. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  131. try:
  132. self.report_data_statistic()
  133. except Exception as e:
  134. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  135. # if __name__ == "__main__":
  136. # pass