123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: zhanghaiwen, yangzihao
- @Data: 2024/02/21
- @Last Modified: 2024/02/21
- @Summary: The template of custom indicator.
- """
- """
- 设计思路:
- """
- import math
- import pandas as pd
- import numpy as np
- from common import zip_time_pairs, continuous_group, get_status_active_data
- from log import logger
- """import functions"""
- Max_Time = 1000
- # custom metric codes
- class CustomMetric(object):
- def __init__(self, all_data, case_name):
- self.data = all_data
- self.optimal_dict = self.data.config
- self.status_trigger_dict = self.data.status_trigger_dict
- self.case_name = case_name
- self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
- self.graph_list = []
- self.df = pd.DataFrame()
- self.ego_df = pd.DataFrame()
- self.df_acc = pd.DataFrame()
- # self.stable_start_time_cruise = None
- self.stable_average_speed = None
- self.delay_time_cruise = None
- self.result = {
- "name": "定速巡航延迟时间",
- "value": [],
- # "weight": [],
- "tableData": {
- "avg": "", # 平均值,或指标值
- "max": "",
- "min": ""
- },
- "reportData": {
- "name": "定速巡航延迟时间(s)",
- # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
- "data": [],
- "markLine": [],
- "range": [],
- },
- "statusFlag": {}
- }
- self.run()
- print(f"定速巡航延迟时间: {self.result['value']}")
- def data_extract(self):
- self.df = self.data.object_df
- self.ego_df = self.data.ego_data
- active_time_ranges = self.status_trigger_dict['ACC']['ACC_active_time']
- self.df_acc = get_status_active_data(active_time_ranges, self.ego_df)
- # self.df_acc = self.ego_df[self.ego_df['ICA_status'] == "LLC_Follow_Line"].copy() # 数字3对应ICA的 LLC_Follow_Line
- # self.df_acc = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
- # self.df_acc = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
- if self.df_acc.empty:
- self.result['statusFlag']['function_ACC'] = False
- else:
- self.result['statusFlag']['function_ACC'] = True
- def _find_stable_speed_cruise(self, window_size, percent_deviation, set_value):
- """
- 在给定的速度数据中查找稳定的巡航速度段,并计算该段的平均速度。
- Args:
- window_size (int): 滑动窗口的大小,表示用于计算平均速度的速度数据点数量。
- percent_deviation (float): 设定值的允许偏差百分比。
- set_value (float): 期望的稳定速度设定值。
- Returns:
- None
- """
- # speed_data = self.df['speedX'].values
- speed_data = self.df_acc['speedX'].values # .tolist()
- deviation = set_value * (percent_deviation / 100)
- stable_start = None
- stable_average_speed = None
- for i in range(len(speed_data) - window_size + 1):
- window_data = speed_data[i:i + window_size]
- if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
- if stable_start is None:
- stable_start = i
- stable_end = i + window_size - 1
- stable_average_speed = np.mean(window_data)
- j = i + window_size
- while j < len(speed_data) - window_size + 1:
- next_window_data = speed_data[j:j + window_size]
- if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
- stable_end = j + window_size - 1
- stable_average_speed = (stable_average_speed * (j - stable_start) + sum(next_window_data)) / (
- j - stable_start + window_size)
- j += window_size
- else:
- stable_start = j + window_size - 1
- stable_end = i + window_size - 1
- stable_average_speed = np.mean(window_data)
- break
- # self.stable_start_time_cruise = self.df['simTime'].iloc[stable_start]
- self.stable_average_speed = stable_average_speed
- def data_analyze(self):
- change_indices = self.df_acc[self.df_acc['set_cruise_speed'] != self.df_acc['set_cruise_speed'].shift()].index
- print(f"Change indices of set speed: {change_indices}")
- set_cruise_speed = self.df_acc.loc[change_indices[0], 'set_cruise_speed']
- self._find_stable_speed_cruise(window_size=4, percent_deviation=5, set_value=set_cruise_speed)
- if not change_indices.empty:
- first_change_index = change_indices[change_indices != 0].min()
- set_cruise_speed_at_change = self.df_acc.loc[first_change_index, 'set_cruise_speed']
- timestamp_at_change = self.df_acc.loc[first_change_index, 'simTime']
- print(f"Set speed at first change: {set_cruise_speed_at_change}, Timestamp: {timestamp_at_change}")
- if self.stable_average_speed:
- target_speed = (self.stable_average_speed + self.df_acc.loc[first_change_index, 'speedX']) / 2
- closest_index = (self.df_acc['speedX'] - target_speed).abs().idxmin()
- closest_current_speed = self.df_acc.loc[closest_index, 'speedX']
- closest_timestamp = self.df_acc.loc[closest_index, 'simTime']
- print(f"Closest speed: {closest_current_speed} at time: {closest_timestamp}")
- self.delay_time_cruise = closest_timestamp - timestamp_at_change
- self.result['value'] = [round(self.delay_time_cruise, 3)]
- print(f"Delay time: {self.delay_time_cruise}")
- else:
- self.delay_time_cruise = Max_Time
- self.result['value'] = [round(self.delay_time_cruise, 3)]
- print("No valid stable speed found.")
- else:
- self.delay_time_cruise = Max_Time
- self.result['value'] = [round(self.delay_time_cruise, 3)]
- print("No valid change point for further calculation.")
- def markline_statistic(self):
- pass
- def report_data_statistic(self):
- # time_list = self.ego_df['simTime'].values.tolist()
- # graph_list = [x for x in self.graph_list if not np.isnan(x)]
- self.result['tableData']['avg'] = self.result['value'][0] if not self.df_acc.empty else '-'
- self.result['tableData']['max'] = '-'
- self.result['tableData']['min'] = '-'
- # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
- self.result['reportData']['data'] = []
- # self.markline_statistic()
- # markline_slices = self.markline_df.to_dict('records')
- self.result['reportData']['markLine'] = []
- self.result['reportData']['range'] = [0, 1.2]
- def run(self):
- # logger.info(f"Custom metric run:[{self.result['name']}].")
- logger.info(f"[case:{self.case_name}] Custom metric:[delay_time_cruise:{self.result['name']}] evaluate.")
- try:
- self.data_extract()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
- try:
- self.data_analyze()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
- try:
- self.report_data_statistic()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
- # if __name__ == "__main__":
- # pass
|