cicv_acc_06_delay_time_THW_new.py 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen, yangzihao
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. """
  17. import math
  18. import pandas as pd
  19. import numpy as np
  20. from common import zip_time_pairs, continuous_group, get_status_active_data, _cal_THW, _cal_v_ego_projection
  21. from log import logger
  22. """import functions"""
  23. Max_Time = 1000
  24. # custom metric codes
  25. class CustomMetric(object):
  26. def __init__(self, all_data, case_name):
  27. self.data = all_data
  28. self.optimal_dict = self.data.config
  29. self.status_trigger_dict = self.data.status_trigger_dict
  30. self.case_name = case_name
  31. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  32. self.graph_list = []
  33. self.df = pd.DataFrame()
  34. self.ego_df = pd.DataFrame()
  35. self.df_acc = pd.DataFrame()
  36. # self.stable_start_time_THW = None
  37. self.stable_average_THW = None
  38. self.delay_time_THW = Max_Time
  39. self.result = {
  40. "name": "跟车延迟时间",
  41. "value": [],
  42. # "weight": [],
  43. "tableData": {
  44. "avg": "", # 平均值,或指标值
  45. "max": "",
  46. "min": ""
  47. },
  48. "reportData": {
  49. "name": "跟车延迟时间(s)",
  50. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  51. "data": [],
  52. "markLine": [],
  53. "range": [],
  54. },
  55. "statusFlag": {}
  56. }
  57. self.run()
  58. print(f"跟车延迟时间: {self.result['value']}")
  59. def data_extract(self):
  60. self.df = self.data.object_df
  61. self.ego_df = self.data.ego_data
  62. active_time_ranges = self.status_trigger_dict['ACC']['ACC_active_time']
  63. self.df_acc = get_status_active_data(active_time_ranges, self.df)
  64. # self.df_acc = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  65. # self.df_acc = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  66. if self.df_acc.empty:
  67. self.result['statusFlag']['function_ACC'] = False
  68. else:
  69. self.result['statusFlag']['function_ACC'] = True
  70. def _find_stable_THW(self, window_size, percent_deviation, set_value):
  71. """
  72. 在给定的数据窗口中查找稳定跟车时距离THW,并计算该段内THW的平均值。
  73. Args:
  74. window_size (int): 窗口大小,表示在数据中寻找稳定段时考虑的连续数据点数量。
  75. percent_deviation (float): THW值相对于设定值的允许偏差百分比。
  76. set_value (float): THW的设定值。
  77. Returns:
  78. None
  79. """
  80. ego_x = self.df_acc[self.df_acc['playerId'] == 1]['posX'].reset_index(drop = True)
  81. ego_y = self.df_acc[self.df_acc['playerId'] == 1]['posY'].reset_index(drop = True)
  82. obj_x = self.df_acc[self.df_acc['playerId'] == 2]['posX'].reset_index(drop = True)
  83. obj_y = self.df_acc[self.df_acc['playerId'] == 2]['posY'].reset_index(drop = True)
  84. ego_speedx = self.df_acc[self.df_acc['playerId'] == 1]['speedX'].reset_index(drop = True)
  85. ego_speedy = self.df_acc[self.df_acc['playerId'] == 1]['speedY'].reset_index(drop = True)
  86. obj_speedx = self.df_acc[self.df_acc['playerId'] == 2]['speedX'].reset_index(drop = True)
  87. obj_speedy = self.df_acc[self.df_acc['playerId'] == 2]['speedY'].reset_index(drop = True)
  88. dx = obj_x - ego_x
  89. dy = obj_y - ego_y
  90. vx = obj_speedx - ego_speedx
  91. vy = obj_speedy - ego_speedy
  92. dist = np.sqrt(dx**2 + dy**2)
  93. ego_v_projection_in_dist = _cal_v_ego_projection(dx, dy, ego_speedx, ego_speedy)
  94. thw1 = _cal_THW(dist, ego_v_projection_in_dist)
  95. thw = thw1.tolist()
  96. THW = []
  97. for item in thw:
  98. THW.append(item)
  99. THW.append(item)
  100. self.df_acc['THW'] = THW
  101. THW = self.df_acc['THW'].values
  102. deviation = set_value * (percent_deviation / 100)
  103. stable_start = None
  104. stable_average_THW = None
  105. for i in range(len(THW) - window_size + 1):
  106. window_data = THW[i:i + window_size]
  107. if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
  108. if stable_start is None:
  109. stable_start = i
  110. stable_end = i + window_size - 1
  111. stable_average_THW = np.mean(window_data)
  112. j = i + window_size
  113. while j < len(THW) - window_size + 1:
  114. next_window_data = THW[j:j + window_size]
  115. if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
  116. stable_end = j + window_size - 1
  117. stable_average_THW = (stable_average_THW * (j - stable_start) + sum(next_window_data)) / (
  118. j - stable_start + window_size)
  119. j += window_size
  120. else:
  121. stable_start = j + window_size - 1
  122. stable_end = i + window_size - 1
  123. stable_average_THW = np.mean(window_data)
  124. break
  125. self.stable_average_THW = stable_average_THW
  126. def data_analyze(self):
  127. change_indices = self.df_acc[self.df_acc['set_headway_time'] != self.df_acc['set_headway_time'].shift()].index
  128. # print("change_indices is", change_indices)
  129. # print(f"Change indices of set speed: {change_indices}")
  130. set_headway_time = self.df_acc.loc[change_indices[0], 'set_headway_time']
  131. self._find_stable_THW(window_size=25, percent_deviation=10, set_value=set_headway_time)
  132. if not change_indices.empty:
  133. first_change_index = change_indices[change_indices != 0].min()
  134. set_THW_at_change = self.df_acc.loc[first_change_index, 'set_headway_time']
  135. timestamp_at_change = self.df_acc.loc[first_change_index, 'simTime']
  136. print(f"Set THW at first change: {set_THW_at_change}, Timestamp: {timestamp_at_change}")
  137. if self.stable_average_THW:
  138. target_THW = (self.stable_average_THW + self.df_acc.loc[first_change_index, 'set_headway_time']) / 2
  139. print("target_THW is", target_THW)
  140. closest_index = (pd.to_numeric(self.df_acc['set_headway_time']) - target_THW).abs().idxmin()
  141. closest_current_THW = self.df_acc.loc[closest_index, 'set_headway_time']
  142. closest_timestamp = self.df_acc.loc[closest_index, 'simTime']
  143. print(f"Closest speed: {closest_current_THW} at time: {closest_timestamp}")
  144. self.delay_time_THW = closest_timestamp - timestamp_at_change
  145. else:
  146. self.delay_time_THW = Max_Time
  147. self.result['value'] = [round(self.delay_time_THW, 3)]
  148. print(f"Delay time: {self.delay_time_THW}")
  149. else:
  150. self.delay_time_THW = 0
  151. self.result['value'] = [round(self.delay_time_THW, 3)]
  152. print("No valid change point for further calculation.")
  153. def markline_statistic(self):
  154. pass
  155. def report_data_statistic(self):
  156. # time_list = self.ego_df['simTime'].values.tolist()
  157. # graph_list = [x for x in self.graph_list if not np.isnan(x)]
  158. self.result['tableData']['avg'] = self.result['value'][0] if not self.df_acc.empty else '-'
  159. self.result['tableData']['max'] = '-'
  160. self.result['tableData']['min'] = '-'
  161. # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
  162. self.result['reportData']['data'] = []
  163. # self.markline_statistic()
  164. # markline_slices = self.markline_df.to_dict('records')
  165. self.result['reportData']['markLine'] = []
  166. self.result['reportData']['range'] = [0, 1.2]
  167. def run(self):
  168. # logger.info(f"Custom metric run:[{self.result['name']}].")
  169. logger.info(f"[case:{self.case_name}] Custom metric:[delay_time_THW:{self.result['name']}] evaluate.")
  170. try:
  171. self.data_extract()
  172. except Exception as e:
  173. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  174. try:
  175. self.data_analyze()
  176. except Exception as e:
  177. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  178. try:
  179. self.report_data_statistic()
  180. except Exception as e:
  181. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  182. # if __name__ == "__main__":
  183. # pass