cicv_acc_07_rise_time_THW_new.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen, yangzihao
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. """
  17. import math
  18. import pandas as pd
  19. import numpy as np
  20. from common import zip_time_pairs, continuous_group, get_status_active_data, _cal_THW, _cal_v_ego_projection
  21. from log import logger
  22. """import functions"""
  23. Max_Time = 1000
  24. # custom metric codes
  25. class CustomMetric(object):
  26. def __init__(self, all_data, case_name):
  27. self.data = all_data
  28. self.optimal_dict = self.data.config
  29. self.status_trigger_dict = self.data.status_trigger_dict
  30. self.case_name = case_name
  31. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  32. self.graph_list = []
  33. self.df = pd.DataFrame()
  34. self.ego_df = pd.DataFrame()
  35. self.df_acc = pd.DataFrame()
  36. # self.stable_start_time_THW = None
  37. self.stable_average_THW = None
  38. self.rise_time_THW = None
  39. self.result = {
  40. "name": "跟车上升时间",
  41. "value": [],
  42. # "weight": [],
  43. "tableData": {
  44. "avg": "", # 平均值,或指标值
  45. "max": "",
  46. "min": ""
  47. },
  48. "reportData": {
  49. "name": "跟车上升时间(s)",
  50. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  51. "data": [],
  52. "markLine": [],
  53. "range": [],
  54. },
  55. "statusFlag": {}
  56. }
  57. self.run()
  58. print(f"跟车上升时间: {self.result['value']}")
  59. def data_extract(self):
  60. self.df = self.data.object_df
  61. self.ego_df = self.data.ego_data
  62. active_time_ranges = self.status_trigger_dict['ACC']['ACC_active_time']
  63. self.df_acc = get_status_active_data(active_time_ranges, self.df)
  64. # self.df_acc = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  65. # self.df_acc = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  66. if self.df_acc.empty:
  67. self.result['statusFlag']['function_ACC'] = False
  68. else:
  69. self.result['statusFlag']['function_ACC'] = True
  70. def _get_first_change_index_THW(self):
  71. """
  72. 获取DataFrame中'set_headway_time'列首次发生变化的索引值。
  73. Args:
  74. 无参数。
  75. Returns:
  76. Union[int, None]: 如果存在变化,则返回首次发生变化的索引值(int类型),否则返回None。
  77. """
  78. change_indices = self.df_acc[self.df_acc['set_headway_time'] != self.df_acc['set_headway_time'].shift()].index
  79. if not change_indices.empty:
  80. first_change_index = change_indices.min()
  81. else:
  82. first_change_index = None
  83. return first_change_index
  84. def _find_stable_THW(self, window_size, percent_deviation, set_value):
  85. """
  86. 在给定的数据窗口中查找稳定跟车时距离THW,并计算该段内THW的平均值。
  87. Args:
  88. window_size (int): 窗口大小,表示在数据中寻找稳定段时考虑的连续数据点数量。
  89. percent_deviation (float): THW值相对于设定值的允许偏差百分比。
  90. set_value (float): THW的设定值。
  91. Returns:
  92. None
  93. """
  94. ego_x = self.df_acc[self.df_acc['playerId'] == 1]['posX'].reset_index(drop = True)
  95. ego_y = self.df_acc[self.df_acc['playerId'] == 1]['posY'].reset_index(drop = True)
  96. obj_x = self.df_acc[self.df_acc['playerId'] == 2]['posX'].reset_index(drop = True)
  97. obj_y = self.df_acc[self.df_acc['playerId'] == 2]['posY'].reset_index(drop = True)
  98. ego_speedx = self.df_acc[self.df_acc['playerId'] == 1]['speedX'].reset_index(drop = True)
  99. ego_speedy = self.df_acc[self.df_acc['playerId'] == 1]['speedY'].reset_index(drop = True)
  100. obj_speedx = self.df_acc[self.df_acc['playerId'] == 2]['speedX'].reset_index(drop = True)
  101. obj_speedy = self.df_acc[self.df_acc['playerId'] == 2]['speedY'].reset_index(drop = True)
  102. dx = obj_x - ego_x
  103. dy = obj_y - ego_y
  104. vx = obj_speedx - ego_speedx
  105. vy = obj_speedy - ego_speedy
  106. dist = np.sqrt(dx**2 + dy**2)
  107. ego_v_projection_in_dist = _cal_v_ego_projection(dx, dy, ego_speedx, ego_speedy)
  108. thw1 = _cal_THW(dist, ego_v_projection_in_dist)
  109. thw = thw1.tolist()
  110. THW = []
  111. for item in thw:
  112. THW.append(item)
  113. THW.append(item)
  114. self.df_acc['THW'] = THW
  115. THW = self.df_acc['THW'].values
  116. deviation = set_value * (percent_deviation / 100)
  117. stable_start = None
  118. stable_average_THW = None
  119. for i in range(len(THW) - window_size + 1):
  120. window_data = THW[i:i + window_size]
  121. if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
  122. if stable_start is None:
  123. stable_start = i
  124. stable_end = i + window_size - 1
  125. stable_average_THW = np.mean(window_data)
  126. j = i + window_size
  127. while j < len(THW) - window_size + 1:
  128. next_window_data = THW[j:j + window_size]
  129. if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
  130. stable_end = j + window_size - 1
  131. stable_average_THW = (stable_average_THW * (j - stable_start) + sum(next_window_data)) / (
  132. j - stable_start + window_size)
  133. j += window_size
  134. else:
  135. stable_start = j + window_size - 1
  136. stable_end = i + window_size - 1
  137. stable_average_THW = np.mean(window_data)
  138. break
  139. # self.stable_start_time_THW = self.df_acc['simTime'].iloc[stable_start]
  140. self.stable_average_THW = stable_average_THW
  141. def _find_closest_time_stamp_THW(self, df, target_THW, start_index):
  142. """
  143. 在DataFrame中找到与目标THW值最接近的时间戳。
  144. Args:
  145. df (pandas.DataFrame): 包含'THW'和'simTime'列的DataFrame,其中'THW'表示目标变量,'simTime'表示时间戳。
  146. target_THW (float): 目标THW值。
  147. start_index (int): 开始搜索的索引位置(不包含)。
  148. Returns:
  149. pandas.Timestamp: 与目标THW值最接近的时间戳。
  150. """
  151. subset = df.loc[start_index + 1:]
  152. THW_diff = np.abs(subset['THW'] - target_THW)
  153. closest_index = THW_diff.idxmin()
  154. closest_timestamp = subset.loc[closest_index, 'simTime']
  155. return closest_timestamp
  156. def data_analyze(self):
  157. """
  158. 计算巡航时从初THW到达稳定THW的90%的所需时间(rise time)。
  159. Args:
  160. 无。
  161. Returns:
  162. 无返回值,但会设置实例属性self.rise_time_THW为计算得到的rise time。
  163. """
  164. first_change_index = self._get_first_change_index_THW()
  165. set_headway_time = self.df_acc.loc[first_change_index, 'set_headway_time']
  166. self._find_stable_THW(window_size=25, percent_deviation=10, set_value=set_headway_time)
  167. initial_THW = self.df_acc.loc[first_change_index, 'THW']
  168. if self.stable_average_THW is not None:
  169. target_THW_90 = pd.to_numeric(initial_THW) + (pd.to_numeric(self.stable_average_THW) - pd.to_numeric(initial_THW)) * 0.9
  170. target_THW_10 = pd.to_numeric(initial_THW) + (pd.to_numeric(self.stable_average_THW) - pd.to_numeric(initial_THW)) * 0.1
  171. timestamp_at_10 = self._find_closest_time_stamp_THW(self.df_acc, target_THW_10, first_change_index)
  172. timestamp_at_90 = self._find_closest_time_stamp_THW(self.df_acc, target_THW_90, first_change_index)
  173. print(f"Closest speed at 10% range from set speed: {timestamp_at_10}")
  174. print(f"Closest speed at 90% range from set speed: {timestamp_at_90}")
  175. self.rise_time_THW = timestamp_at_90 - timestamp_at_10
  176. else:
  177. self.rise_time_THW = Max_Time
  178. self.result['value'] = [round(self.rise_time_THW, 3)]
  179. print(f"Rise time: {self.rise_time_THW}")
  180. def markline_statistic(self):
  181. pass
  182. def report_data_statistic(self):
  183. # time_list = self.ego_df['simTime'].values.tolist()
  184. # graph_list = [x for x in self.graph_list if not np.isnan(x)]
  185. self.result['tableData']['avg'] = self.result['value'][0] if not self.df_acc.empty else '-'
  186. self.result['tableData']['max'] = '-'
  187. self.result['tableData']['min'] = '-'
  188. # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
  189. self.result['reportData']['data'] = []
  190. # self.markline_statistic()
  191. # markline_slices = self.markline_df.to_dict('records')
  192. self.result['reportData']['markLine'] = []
  193. self.result['reportData']['range'] = [0, 1.2]
  194. def run(self):
  195. # logger.info(f"Custom metric run:[{self.result['name']}].")
  196. logger.info(f"[case:{self.case_name}] Custom metric:[rise_time_THW:{self.result['name']}] evaluate.")
  197. try:
  198. self.data_extract()
  199. except Exception as e:
  200. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  201. try:
  202. self.data_analyze()
  203. except Exception as e:
  204. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  205. try:
  206. self.report_data_statistic()
  207. except Exception as e:
  208. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  209. # if __name__ == "__main__":
  210. # pass