cicv_acc_08_peak_time_THW_new.py 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen, yangzihao
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. """
  17. import math
  18. import pandas as pd
  19. import numpy as np
  20. from common import zip_time_pairs, continuous_group, get_status_active_data, _cal_THW, _cal_v_ego_projection
  21. from log import logger
  22. """import functions"""
  23. # custom metric codes
  24. class CustomMetric(object):
  25. def __init__(self, all_data, case_name):
  26. self.data = all_data
  27. self.optimal_dict = self.data.config
  28. self.status_trigger_dict = self.data.status_trigger_dict
  29. self.case_name = case_name
  30. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  31. self.graph_list = []
  32. self.df = pd.DataFrame()
  33. self.ego_df = pd.DataFrame()
  34. self.df_acc = pd.DataFrame()
  35. self.peak_time_THW = None
  36. self.result = {
  37. "name": "跟车峰值时间",
  38. "value": [],
  39. # "weight": [],
  40. "tableData": {
  41. "avg": "", # 平均值,或指标值
  42. "max": "",
  43. "min": ""
  44. },
  45. "reportData": {
  46. "name": "跟车峰值时间(s)",
  47. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  48. "data": [],
  49. "markLine": [],
  50. "range": [],
  51. },
  52. "statusFlag": {}
  53. }
  54. self.run()
  55. print(f"跟车峰值时间: {self.result['value']}")
  56. def data_extract(self):
  57. self.df = self.data.object_df
  58. self.ego_df = self.data.ego_data
  59. active_time_ranges = self.status_trigger_dict['ACC']['ACC_active_time']
  60. self.df_acc = get_status_active_data(active_time_ranges, self.df)
  61. # self.df_ica = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  62. # self.df_ica = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  63. if self.df_acc.empty:
  64. self.result['statusFlag']['function_ACC'] = False
  65. else:
  66. self.result['statusFlag']['function_ACC'] = True
  67. def _get_first_change_index_THW(self):
  68. """
  69. 获取DataFrame中'set_headway_time'列首次发生变化的索引值。
  70. Args:
  71. 无参数。
  72. Returns:
  73. Union[int, None]: 如果存在变化,则返回首次发生变化的索引值(int类型),否则返回None。
  74. """
  75. ego_x = self.df_acc[self.df_acc['playerId'] == 1]['posX'].reset_index(drop=True)
  76. ego_y = self.df_acc[self.df_acc['playerId'] == 1]['posY'].reset_index(drop=True)
  77. obj_x = self.df_acc[self.df_acc['playerId'] == 2]['posX'].reset_index(drop=True)
  78. obj_y = self.df_acc[self.df_acc['playerId'] == 2]['posY'].reset_index(drop=True)
  79. ego_speedx = self.df_acc[self.df_acc['playerId'] == 1]['speedX'].reset_index(drop=True)
  80. ego_speedy = self.df_acc[self.df_acc['playerId'] == 1]['speedY'].reset_index(drop=True)
  81. obj_speedx = self.df_acc[self.df_acc['playerId'] == 2]['speedX'].reset_index(drop=True)
  82. obj_speedy = self.df_acc[self.df_acc['playerId'] == 2]['speedY'].reset_index(drop=True)
  83. dx = obj_x - ego_x
  84. dy = obj_y - ego_y
  85. # vx = obj_speedx - ego_speedx
  86. # vy = obj_speedy - ego_speedy
  87. dist = np.sqrt(dx ** 2 + dy ** 2)
  88. ego_v_projection_in_dist = _cal_v_ego_projection(dx, dy, ego_speedx, ego_speedy)
  89. thw1 = _cal_THW(dist, ego_v_projection_in_dist)
  90. thw = thw1.tolist()
  91. THW = []
  92. for item in thw:
  93. THW.append(item)
  94. THW.append(item)
  95. self.df_acc['THW'] = THW
  96. change_indices = self.df_acc[self.df_acc['set_headway_time'] != self.df_acc['set_headway_time'].shift()].index
  97. if not change_indices.empty:
  98. first_change_index = change_indices.min()
  99. else:
  100. first_change_index = None
  101. return first_change_index
  102. def data_analyze(self):
  103. first_change_index = self._get_first_change_index_THW()
  104. if not first_change_index:
  105. self.peak_time_THW = 0
  106. self.result['value'] = [round(self.peak_time_THW, 3)]
  107. print(f"peak_time_THW: {self.peak_time_THW}")
  108. else:
  109. start_time = self.df_acc.loc[first_change_index, 'simTime']
  110. peak_time = self.df_acc.loc[self.df_acc['THW'].idxmax(), 'simTime']
  111. self.peak_time_THW = peak_time - start_time
  112. self.result['value'] = [round(self.peak_time_THW, 3)]
  113. print(f"peak_time_THW: {self.peak_time_THW}")
  114. def markline_statistic(self):
  115. pass
  116. def report_data_statistic(self):
  117. # time_list = self.ego_df['simTime'].values.tolist()
  118. # graph_list = [x for x in self.graph_list if not np.isnan(x)]
  119. self.result['tableData']['avg'] = self.result['value'][0] if not self.df_acc.empty else '-'
  120. self.result['tableData']['max'] = '-'
  121. self.result['tableData']['min'] = '-'
  122. # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
  123. self.result['reportData']['data'] = []
  124. # self.markline_statistic()
  125. # markline_slices = self.markline_df.to_dict('records')
  126. self.result['reportData']['markLine'] = []
  127. self.result['reportData']['range'] = [0, 1.2]
  128. def run(self):
  129. # logger.info(f"Custom metric run:[{self.result['name']}].")
  130. logger.info(f"[case:{self.case_name}] Custom metric:[peak_time_THW:{self.result['name']}] evaluate.")
  131. try:
  132. self.data_extract()
  133. except Exception as e:
  134. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  135. try:
  136. self.data_analyze()
  137. except Exception as e:
  138. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  139. try:
  140. self.report_data_statistic()
  141. except Exception as e:
  142. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  143. # if __name__ == "__main__":
  144. # pass