cicv_acc_10_steady_error_THW_new.py 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen, yangzihao
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. """
  17. import math
  18. import pandas as pd
  19. import numpy as np
  20. from common import zip_time_pairs, continuous_group, get_status_active_data, _cal_THW, _cal_v_ego_projection
  21. #from common import zip_time_pairs, continuous_group, get_status_active_data, _cal_THW, _cal_v_ego_projection
  22. from log import logger
  23. import pandas as pd
  24. import matplotlib.pyplot as plt
  25. import seaborn as sns
  26. """import functions"""
  27. Max_error = 100
  28. # custom metric codes
  29. class CustomMetric(object):
  30. def __init__(self, all_data, case_name):
  31. self.data = all_data
  32. self.optimal_dict = self.data.config
  33. self.status_trigger_dict = self.data.status_trigger_dict
  34. self.case_name = case_name
  35. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  36. self.graph_list = []
  37. self.df = pd.DataFrame()
  38. self.ego_df = pd.DataFrame()
  39. self.df_acc = pd.DataFrame()
  40. self.stable_average_THW = None
  41. self.steady_error_THW = Max_error
  42. self.result = {
  43. "name": "跟车速度稳态误差",
  44. "value": [],
  45. # "weight": [],
  46. "tableData": {
  47. "avg": "", # 平均值,或指标值
  48. "max": "",
  49. "min": ""
  50. },
  51. "reportData": {
  52. "name": "跟车速度稳态误差(%)",
  53. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  54. "data": [],
  55. "markLine": [],
  56. "range": [],
  57. },
  58. "statusFlag": {}
  59. }
  60. self.run()
  61. print(f"跟车速度稳态误差: {self.result['value']}")
  62. def data_extract(self):
  63. self.df = self.data.object_df
  64. self.ego_df = self.data.ego_data
  65. active_time_ranges = self.status_trigger_dict['ACC']['ACC_active_time']
  66. self.df_acc = get_status_active_data(active_time_ranges, self.df)
  67. # self.df_ica = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  68. # self.df_ica = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  69. if self.df_acc.empty:
  70. self.result['statusFlag']['function_ACC'] = False
  71. else:
  72. self.result['statusFlag']['function_ACC'] = True
  73. def _get_first_change_index_THW(self):
  74. """
  75. 获取DataFrame中'set_headway_time'列首次发生变化的索引值。
  76. Args:
  77. 无参数。
  78. Returns:
  79. Union[int, None]: 如果存在变化,则返回首次发生变化的索引值(int类型),否则返回None。
  80. """
  81. change_indices = self.df_acc[self.df_acc['set_headway_time'] != self.df_acc['set_headway_time'].shift()].index
  82. if not change_indices.empty:
  83. first_change_index = change_indices.min()
  84. else:
  85. first_change_index = None
  86. return first_change_index
  87. def _find_stable_THW(self, window_size, percent_deviation, set_value):
  88. """
  89. 在给定的数据窗口中查找稳定跟车时距离THW,并计算该段内THW的平均值。
  90. Args:
  91. window_size (int): 窗口大小,表示在数据中寻找稳定段时考虑的连续数据点数量。
  92. percent_deviation (float): THW值相对于设定值的允许偏差百分比。
  93. set_value (float): THW的设定值。
  94. Returns:
  95. None
  96. """
  97. ego_x = self.df_acc[self.df_acc['playerId'] == 1]['posX'].reset_index(drop=True)
  98. ego_y = self.df_acc[self.df_acc['playerId'] == 1]['posY'].reset_index(drop=True)
  99. obj_x = self.df_acc[self.df_acc['playerId'] == 2]['posX'].reset_index(drop=True)
  100. obj_y = self.df_acc[self.df_acc['playerId'] == 2]['posY'].reset_index(drop=True)
  101. ego_speedx = self.df_acc[self.df_acc['playerId'] == 1]['speedX'].reset_index(drop=True)
  102. ego_speedy = self.df_acc[self.df_acc['playerId'] == 1]['speedY'].reset_index(drop=True)
  103. obj_speedx = self.df_acc[self.df_acc['playerId'] == 2]['speedX'].reset_index(drop=True)
  104. obj_speedy = self.df_acc[self.df_acc['playerId'] == 2]['speedY'].reset_index(drop=True)
  105. dx = obj_x - ego_x
  106. dy = obj_y - ego_y
  107. # vx = obj_speedx - ego_speedx
  108. # vy = obj_speedy - ego_speedy
  109. dist = np.sqrt(dx ** 2 + dy ** 2)
  110. ego_v_projection_in_dist = _cal_v_ego_projection(dx, dy, ego_speedx, ego_speedy)
  111. thw1 = _cal_THW(dist, ego_v_projection_in_dist)
  112. thw = thw1.tolist()
  113. THW = []
  114. for item in thw:
  115. THW.append(item)
  116. THW.append(item)
  117. self.df_acc['THW'] = THW
  118. THW = self.df_acc['THW'].values
  119. deviation = set_value * (percent_deviation / 100)
  120. stable_start = None
  121. stable_average_THW = None
  122. for i in range(len(THW) - window_size + 1):
  123. window_data = THW[i:i + window_size]
  124. if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
  125. if stable_start is None:
  126. stable_start = i
  127. stable_end = i + window_size - 1
  128. stable_average_THW = np.mean(window_data)
  129. j = i + window_size
  130. while j < len(THW) - window_size + 1:
  131. next_window_data = THW[j:j + window_size]
  132. if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
  133. stable_end = j + window_size - 1
  134. stable_average_THW = (stable_average_THW * (j - stable_start) + sum(next_window_data)) / (
  135. j - stable_start + window_size)
  136. j += window_size
  137. else:
  138. stable_start = j + window_size - 1
  139. stable_end = i + window_size - 1
  140. stable_average_THW = np.mean(window_data)
  141. break
  142. # self.stable_start_time_THW = self.df_ica['simTime'].iloc[stable_start]
  143. self.stable_average_THW = stable_average_THW
  144. def data_analyze(self):
  145. first_change_index = self._get_first_change_index_THW()
  146. if not first_change_index:
  147. self.steady_error_THW = 0
  148. self.result['value'] = [abs(round(self.steady_error_THW, 3))]
  149. print(f"steady_error_THW: {abs(self.steady_error_THW)}")
  150. else:
  151. set_headway_time = self.df_acc.loc[first_change_index, 'set_headway_time']
  152. self._find_stable_THW(window_size=25, percent_deviation=10, set_value=set_headway_time)
  153. if self.stable_average_THW:
  154. self.steady_error_THW = (self.stable_average_THW - set_headway_time) * 100 / self.stable_average_THW
  155. else:
  156. self.steady_error_THW = Max_error
  157. self.result['value'] = [abs(round(self.steady_error_THW, 3))]
  158. print(f"steady_error_THW: {abs(self.steady_error_THW)}")
  159. def markline_statistic(self):
  160. pass
  161. def report_data_statistic(self):
  162. # time_list = self.ego_df['simTime'].values.tolist()
  163. # graph_list = [x for x in self.graph_list if not np.isnan(x)]
  164. self.result['tableData']['avg'] = self.result['value'][0] if not self.df_acc.empty else '-'
  165. self.result['tableData']['max'] = '-'
  166. self.result['tableData']['min'] = '-'
  167. # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
  168. self.result['reportData']['data'] = []
  169. # self.markline_statistic()
  170. # markline_slices = self.markline_df.to_dict('records')
  171. self.result['reportData']['markLine'] = []
  172. self.result['reportData']['range'] = [0, 1.2]
  173. def run(self):
  174. # logger.info(f"Custom metric run:[{self.result['name']}].")
  175. logger.info(f"[case:{self.case_name}] Custom metric:[steady_error_THW:{self.result['name']}] evaluate.")
  176. try:
  177. self.data_extract()
  178. except Exception as e:
  179. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  180. try:
  181. self.data_analyze()
  182. except Exception as e:
  183. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  184. try:
  185. self.report_data_statistic()
  186. except Exception as e:
  187. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  188. # if __name__ == "__main__":
  189. # pass