cicv_ica_lateral_control07_center_distance_max_new.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhangyu
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. 最大横向偏移量
  17. zy_center_distance_expectation
  18. """
  19. import math
  20. import pandas as pd
  21. import numpy as np
  22. from common import zip_time_pairs, continuous_group, get_status_active_data
  23. from log import logger
  24. """import functions"""
  25. # custom metric codes
  26. class CustomMetric(object):
  27. def __init__(self, all_data, case_name):
  28. self.data = all_data
  29. self.optimal_dict = self.data.config
  30. self.status_trigger_dict = self.data.status_trigger_dict
  31. self.case_name = case_name
  32. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  33. self.df = pd.DataFrame()
  34. self.ego_df = pd.DataFrame()
  35. self.df_follow = pd.DataFrame()
  36. self.roadMark_df = pd.DataFrame()
  37. self.roadPos_df = pd.DataFrame()
  38. self.time_list_follow = list()
  39. self.frame_list_follow = list()
  40. self.dist_list = list()
  41. self.dist_deviation_list = list()
  42. self.dist_deviation_list_full_time = list()
  43. self.result = {
  44. "name": "横向距离极大值",
  45. "value": [],
  46. # "weight": [],
  47. "tableData": {
  48. "avg": "", # 平均值,或指标值
  49. "max": "",
  50. "min": ""
  51. },
  52. "reportData": {
  53. "name": "横向距离极大值(m)",
  54. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  55. "data": [],
  56. "markLine": [],
  57. "range": [],
  58. },
  59. "statusFlag": {}
  60. }
  61. self.run()
  62. print(f"指标07: 横向距离极大值: {self.result['value']}")
  63. def data_extract(self):
  64. self.df = self.data.object_df
  65. self.ego_df = self.data.object_df[self.data.object_df.playerId == 1]
  66. # new active get code
  67. active_time_ranges = self.status_trigger_dict['ICA']['ICA_Lateral_time']
  68. self.roadPos_df = get_status_active_data(active_time_ranges, self.data.road_pos_df)
  69. # self.df_ego = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  70. # self.df_ego = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  71. # self.roadMark_df = self.data.road_mark_df
  72. # self.roadPos_df = self.data.road_pos_df
  73. if self.roadPos_df.empty:
  74. self.result['statusFlag']['function_ICA'] = False
  75. else:
  76. self.result['statusFlag']['function_ICA'] = True
  77. def dist(self, x1, y1, x2, y2):
  78. dis = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
  79. return dis
  80. def Compute_nearby_distance_to_lane_boundary(self, x, width_ego):
  81. if x.lateralDist < abs(x.right_lateral_distance):
  82. return x.lateralDist - width_ego/2
  83. else:
  84. return abs(x.right_lateral_distance) - width_ego/2
  85. def func_laneOffset_abs(self, x):
  86. return abs(x.laneOffset)
  87. def data_analyze(self):
  88. if self.roadPos_df.empty:
  89. row_with_max_value = 0.0
  90. self.result['value'] = [0.0]
  91. else:
  92. # 提取自车宽度
  93. roadPos_df = self.roadPos_df
  94. # player_df = self.df
  95. # ego_df = player_df[player_df.playerId == 1]
  96. # width_ego = ego_df['dimY'].values.tolist()[0]
  97. # 提取距离左车道线和右车道线距离
  98. roadPos_ego_df = roadPos_df[roadPos_df.playerId == 1].reset_index(drop=True)
  99. # # 计算到车道边界线距离
  100. roadPos_ego_df['laneOffset_abs'] = roadPos_ego_df.apply(lambda x: self.func_laneOffset_abs(x), axis=1)
  101. max_laneOffset_abs_index = roadPos_ego_df['laneOffset_abs'].idxmax()
  102. row_with_max_value = roadPos_ego_df.iloc[max_laneOffset_abs_index].laneOffset
  103. self.result['value'] = [row_with_max_value]
  104. self.time_list_follow = roadPos_ego_df['simTime'].values.tolist()
  105. self.frame_list_follow = roadPos_ego_df['simFrame'].values.tolist()
  106. self.dist_deviation_list = roadPos_ego_df['laneOffset'].values.tolist()
  107. def markline_statistic(self):
  108. if not self.roadPos_df.empty:
  109. unfunc_df = pd.DataFrame({'simTime': self.time_list_follow, 'simFrame': self.frame_list_follow,
  110. 'dist_deviation': self.dist_deviation_list})
  111. unfunc_df = unfunc_df[unfunc_df['simFrame'] > 1]
  112. # v_df = unfunc_df[unfunc_df['dist_deviation'] > 0]
  113. v_df = unfunc_df
  114. v_df = v_df[['simTime', 'simFrame', 'dist_deviation']]
  115. v_follow_df = continuous_group(v_df)
  116. v_follow_df['type'] = "ICA"
  117. self.markline_df = pd.concat([self.markline_df, v_follow_df], ignore_index=True)
  118. def report_data_statistic(self):
  119. if not self.roadPos_df.empty:
  120. time_list = self.ego_df['simTime'].values.tolist()
  121. graph_list = [x for x in self.dist_deviation_list if not np.isnan(x)]
  122. self.result['tableData']['avg'] = f'{np.mean(graph_list):.2f}' if graph_list else 0
  123. self.result['tableData']['max'] = f'{max(graph_list):.2f}' if graph_list else 0
  124. self.result['tableData']['min'] = f'{min(graph_list):.2f}' if graph_list else 0
  125. zip_vs_time = zip_time_pairs(time_list, self.dist_deviation_list)
  126. self.result['reportData']['data'] = zip_vs_time
  127. self.markline_statistic()
  128. markline_slices = self.markline_df.to_dict('records')
  129. self.result['reportData']['markLine'] = markline_slices
  130. self.result['reportData']['range'] = f"[-1.875, 1.875]"
  131. else:
  132. self.result['tableData']['avg'] = 0
  133. self.result['tableData']['max'] = 0
  134. self.result['tableData']['min'] = 0
  135. zip_vs_time = []
  136. self.result['reportData']['data'] = zip_vs_time
  137. self.markline_statistic()
  138. markline_slices = self.markline_df.to_dict('records')
  139. self.result['reportData']['markLine'] = markline_slices
  140. self.result['reportData']['range'] = f"[-1.875, 1.875]"
  141. def run(self):
  142. # logger.info(f"Custom metric run:[{self.result['name']}].")
  143. logger.info(f"[case:{self.case_name}] Custom metric:[ica_distance_deviation:{self.result['name']}] evaluate.")
  144. try:
  145. self.data_extract()
  146. except Exception as e:
  147. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  148. try:
  149. self.data_analyze()
  150. except Exception as e:
  151. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  152. try:
  153. self.report_data_statistic()
  154. except Exception as e:
  155. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  156. # if __name__ == "__main__":
  157. # pass