cicv_ica_longitudinal_control02_rise_time_cruise_new.py 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen, yangzihao
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. """
  17. import math
  18. import pandas as pd
  19. import numpy as np
  20. from common import zip_time_pairs, continuous_group, get_status_active_data
  21. from log import logger
  22. """import functions"""
  23. # custom metric codes
  24. Max_Time = 1000
  25. class CustomMetric(object):
  26. def __init__(self, all_data, case_name):
  27. self.data = all_data
  28. self.optimal_dict = self.data.config
  29. self.status_trigger_dict = self.data.status_trigger_dict
  30. self.case_name = case_name
  31. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  32. self.graph_list = []
  33. self.df = pd.DataFrame()
  34. self.ego_df = pd.DataFrame()
  35. self.df_ica = pd.DataFrame()
  36. self.stable_average_speed = None
  37. self.rise_time_cruise = Max_Time
  38. self.result = {
  39. "name": "定速巡航上升时间",
  40. "value": [],
  41. # "weight": [],
  42. "tableData": {
  43. "avg": "", # 平均值,或指标值
  44. "max": "",
  45. "min": ""
  46. },
  47. "reportData": {
  48. "name": "定速巡航上升时间(s)",
  49. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  50. "data": [],
  51. "markLine": [],
  52. "range": [],
  53. },
  54. "statusFlag": {}
  55. }
  56. self.run()
  57. print(f"定速巡航上升时间: {self.result['value']}")
  58. def data_extract(self):
  59. self.df = self.data.object_df
  60. self.ego_df = self.data.ego_data
  61. active_time_ranges = self.status_trigger_dict['ICA']['ICA_cruise_time']
  62. self.df_ica = get_status_active_data(active_time_ranges, self.ego_df)
  63. # self.df_ica = self.ego_df[self.ego_df['ICA_status'] == "LLC_Follow_Line"].copy() # 数字3对应ICA的Active
  64. # self.df_ica = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  65. # self.df_ica = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  66. if self.df_ica.empty:
  67. self.result['statusFlag']['function_ICA'] = False
  68. else:
  69. self.result['statusFlag']['function_ICA'] = True
  70. def _get_first_change_index_cruise(self):
  71. """
  72. 获取数据集中第一次巡航速度发生变化的索引。
  73. Args:
  74. 无参数。
  75. Returns:
  76. Union[int, None]: 如果存在巡航速度发生变化的索引,则返回第一个发生变化的索引(int类型);
  77. 如果不存在,则返回None。
  78. """
  79. change_indices = self.df_ica[self.df_ica['set_cruise_speed'] != self.df_ica['set_cruise_speed'].shift()].index
  80. if not change_indices.empty:
  81. first_change_index = change_indices.min()
  82. else:
  83. first_change_index = None
  84. return first_change_index
  85. def _find_stable_speed_cruise(self, window_size, percent_deviation, set_value):
  86. """
  87. 在给定的速度数据中查找稳定的巡航速度段,并计算该段的平均速度。
  88. Args:
  89. window_size (int): 滑动窗口的大小,表示用于计算平均速度的速度数据点数量。
  90. percent_deviation (float): 设定值的允许偏差百分比。
  91. set_value (float): 期望的稳定速度设定值。
  92. Returns:
  93. None
  94. """
  95. # speed_data = self.df['speedX'].values
  96. speed_data = self.df_ica['speedX'].values #.tolist()
  97. deviation = set_value * (percent_deviation / 100)
  98. stable_start = None
  99. stable_average_speed = None
  100. for i in range(len(speed_data) - window_size + 1):
  101. window_data = speed_data[i:i + window_size]
  102. if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
  103. if stable_start is None:
  104. stable_start = i
  105. stable_end = i + window_size - 1
  106. stable_average_speed = np.mean(window_data)
  107. j = i + window_size
  108. while j < len(speed_data) - window_size + 1:
  109. next_window_data = speed_data[j:j + window_size]
  110. if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
  111. stable_end = j + window_size - 1
  112. stable_average_speed = (stable_average_speed * (j - stable_start) + sum(next_window_data)) / (
  113. j - stable_start + window_size)
  114. j += window_size
  115. else:
  116. stable_start = j + window_size - 1
  117. stable_end = i + window_size - 1
  118. stable_average_speed = np.mean(window_data)
  119. break
  120. # self.stable_start_time_cruise = self.df['simTime'].iloc[stable_start]
  121. self.stable_average_speed = stable_average_speed
  122. def _find_closest_time_stamp_cruise(self, df, target_speed, start_index):
  123. """
  124. 在给定的数据帧df中,从start_index索引位置开始,查找与目标速度target_speed最接近的时间戳。
  125. Args:
  126. df (pd.DataFrame): 包含速度和时间戳等信息的数据帧,需要至少包含'speedX'和'simTime'两列。
  127. target_speed (float): 目标速度值,用于在数据帧中查找最接近此值的时间戳。
  128. start_index (int): 开始查找的索引位置,即在数据帧df中从该索引位置开始向后查找。
  129. Returns:
  130. pd.Timestamp: 与目标速度最接近的时间戳。
  131. """
  132. subset = df.loc[start_index + 1:]
  133. speed_diff = np.abs(subset['speedX'] - target_speed)
  134. closest_index = speed_diff.idxmin()
  135. closest_timestamp = subset.loc[closest_index, 'simTime']
  136. return closest_timestamp
  137. def data_analyze(self):
  138. if not self.df_ica.empty:
  139. first_change_index = self._get_first_change_index_cruise()
  140. set_cruise_speed = self.df_ica.loc[first_change_index, 'set_cruise_speed']
  141. self._find_stable_speed_cruise(window_size=40, percent_deviation=20, set_value=set_cruise_speed)
  142. initial_speed = self.df_ica.loc[first_change_index, 'speedX']
  143. if self.stable_average_speed:
  144. target_speed_90 = initial_speed + (self.stable_average_speed - initial_speed) * 0.9
  145. target_speed_10 = initial_speed + (self.stable_average_speed - initial_speed) * 0.1
  146. timestamp_at_10 = self._find_closest_time_stamp_cruise(self.df_ica, target_speed_10, first_change_index)
  147. timestamp_at_90 = self._find_closest_time_stamp_cruise(self.df_ica, target_speed_90, first_change_index)
  148. print(f"Closest speed at 10% range from set speed: {timestamp_at_10}")
  149. print(f"Closest speed at 90% range from set speed: {timestamp_at_90}")
  150. self.rise_time_cruise = timestamp_at_90 - timestamp_at_10
  151. self.result['value'] = [round(self.rise_time_cruise, 3)]
  152. print(f"Rise time: {self.rise_time_cruise}")
  153. else:
  154. self.rise_time_cruise = Max_Time
  155. self.result['value'] = [round(self.rise_time_cruise, 3)]
  156. else:
  157. self.delay_time_cruise = Max_Time
  158. self.result['value'] = [Max_Time]
  159. def markline_statistic(self):
  160. pass
  161. def report_data_statistic(self):
  162. # time_list = self.ego_df['simTime'].values.tolist()
  163. # graph_list = [x for x in self.graph_list if not np.isnan(x)]
  164. self.result['tableData']['avg'] = self.result['value'][0] if not self.df_ica.empty else '-'
  165. self.result['tableData']['max'] = '-'
  166. self.result['tableData']['min'] = '-'
  167. # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
  168. self.result['reportData']['data'] = []
  169. # self.markline_statistic()
  170. # markline_slices = self.markline_df.to_dict('records')
  171. self.result['reportData']['markLine'] = []
  172. self.result['reportData']['range'] = [0, 1.2]
  173. def run(self):
  174. # logger.info(f"Custom metric run:[{self.result['name']}].")
  175. logger.info(f"[case:{self.case_name}] Custom metric:[rise_time_cruise:{self.result['name']}] evaluate.")
  176. try:
  177. self.data_extract()
  178. except Exception as e:
  179. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  180. try:
  181. self.data_analyze()
  182. except Exception as e:
  183. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  184. try:
  185. self.report_data_statistic()
  186. except Exception as e:
  187. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  188. # if __name__ == "__main__":
  189. # pass