123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: zhanghaiwen, yangzihao
- @Data: 2024/02/21
- @Last Modified: 2024/02/21
- @Summary: The template of custom indicator.
- """
- """
- 设计思路:
- """
- import math
- import pandas as pd
- import numpy as np
- from common import zip_time_pairs, continuous_group, get_status_active_data, _cal_THW, _cal_v_ego_projection
- from log import logger
- """import functions"""
- # custom metric codes
- Max_Time = 1000
- class CustomMetric(object):
- def __init__(self, all_data, case_name):
- self.data = all_data
- self.optimal_dict = self.data.config
- self.status_trigger_dict = self.data.status_trigger_dict
- self.case_name = case_name
- self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
- self.graph_list = []
- self.df = pd.DataFrame()
- self.ego_df = pd.DataFrame()
- self.df_ica = pd.DataFrame()
- # self.stable_start_time_THW = None
- self.stable_average_THW = None
- self.rise_time_THW = None
- self.result = {
- "name": "跟车上升时间",
- "value": [],
- # "weight": [],
- "tableData": {
- "avg": "", # 平均值,或指标值
- "max": "",
- "min": ""
- },
- "reportData": {
- "name": "跟车上升时间(s)",
- # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
- "data": [],
- "markLine": [],
- "range": [],
- },
- "statusFlag": {}
- }
- self.run()
- print(f"跟车上升时间: {self.result['value']}")
- def data_extract(self):
- self.df = self.data.object_df
- self.ego_df = self.data.ego_data
- active_time_ranges = self.status_trigger_dict['ICA']['ICA_follow_time']
- self.df_ica = get_status_active_data(active_time_ranges, self.ego_df)
- # self.df_ica = self.ego_df[self.ego_df['ICA_status'] == "LLC_Follow_Vehicle"].copy() # 数字3对应ICA的Active
- # self.df_ica = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
- # self.df_ica = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
- if self.df_ica.empty:
- self.result['statusFlag']['function_ICA'] = False
- else:
- self.result['statusFlag']['function_ICA'] = True
- def _get_first_change_index_THW(self):
- """
- 获取DataFrame中'set_headway_time'列首次发生变化的索引值。
- Args:
- 无参数。
- Returns:
- Union[int, None]: 如果存在变化,则返回首次发生变化的索引值(int类型),否则返回None。
- """
- change_indices = self.df_ica[self.df_ica['set_headway_time'] != self.df_ica['set_headway_time'].shift()].index
- if not change_indices.empty:
- first_change_index = change_indices.min()
- else:
- first_change_index = None
- return first_change_index
- def _find_stable_THW(self, window_size, percent_deviation, set_value):
- """
- 在给定的数据窗口中查找稳定跟车时距离THW,并计算该段内THW的平均值。
- Args:
- window_size (int): 窗口大小,表示在数据中寻找稳定段时考虑的连续数据点数量。
- percent_deviation (float): THW值相对于设定值的允许偏差百分比。
- set_value (float): THW的设定值。
- Returns:
- None
- """
- ego_x = self.df_ica[self.df_ica['playerId'] == 1]['posX'].reset_index(drop=True)
- ego_y = self.df_ica[self.df_ica['playerId'] == 1]['posY'].reset_index(drop=True)
- obj_x = self.df_ica[self.df_ica['playerId'] == 2]['posX'].reset_index(drop=True)
- obj_y = self.df_ica[self.df_ica['playerId'] == 2]['posY'].reset_index(drop=True)
- ego_speedx = self.df_ica[self.df_ica['playerId'] == 1]['speedX'].reset_index(drop=True)
- ego_speedy = self.df_ica[self.df_ica['playerId'] == 1]['speedY'].reset_index(drop=True)
- obj_speedx = self.df_ica[self.df_ica['playerId'] == 2]['speedX'].reset_index(drop=True)
- obj_speedy = self.df_ica[self.df_ica['playerId'] == 2]['speedY'].reset_index(drop=True)
- dx = obj_x - ego_x
- dy = obj_y - ego_y
- vx = obj_speedx - ego_speedx
- vy = obj_speedy - ego_speedy
- dist = np.sqrt(dx ** 2 + dy ** 2)
- ego_v_projection_in_dist = _cal_v_ego_projection(dx, dy, ego_speedx, ego_speedy)
- thw1 = _cal_THW(dist, ego_v_projection_in_dist)
- thw = thw1.tolist()
- THW = []
- for item in thw:
- THW.append(item)
- THW.append(item)
- self.df_ica['THW'] = THW
- THW = self.df_ica['THW'].values
- deviation = set_value * (percent_deviation / 100)
- stable_start = None
- stable_average_THW = None
- for i in range(len(THW) - window_size + 1):
- window_data = THW[i:i + window_size]
- if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
- if stable_start is None:
- stable_start = i
- stable_end = i + window_size - 1
- stable_average_THW = np.mean(window_data)
- j = i + window_size
- while j < len(THW) - window_size + 1:
- next_window_data = THW[j:j + window_size]
- if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
- stable_end = j + window_size - 1
- stable_average_THW = (stable_average_THW * (j - stable_start) + sum(next_window_data)) / (
- j - stable_start + window_size)
- j += window_size
- else:
- stable_start = j + window_size - 1
- stable_end = i + window_size - 1
- stable_average_THW = np.mean(window_data)
- break
- # self.stable_start_time_THW = self.df_ica['simTime'].iloc[stable_start]
- self.stable_average_THW = stable_average_THW
- def _find_closest_time_stamp_THW(self, df, target_THW, start_index):
- """
- 在DataFrame中找到与目标THW值最接近的时间戳。
- Args:
- df (pandas.DataFrame): 包含'THW'和'simTime'列的DataFrame,其中'THW'表示目标变量,'simTime'表示时间戳。
- target_THW (float): 目标THW值。
- start_index (int): 开始搜索的索引位置(不包含)。
- Returns:
- pandas.Timestamp: 与目标THW值最接近的时间戳。
- """
- subset = df.loc[start_index + 1:]
- THW_diff = np.abs(subset['THW'] - target_THW)
- closest_index = THW_diff.idxmin()
- closest_timestamp = subset.loc[closest_index, 'simTime']
- return closest_timestamp
- def data_analyze(self):
- """
- 计算巡航时从初THW到达稳定THW的90%的所需时间(rise time)。
- Args:
- 无。
- Returns:
- 无返回值,但会设置实例属性self.rise_time_THW为计算得到的rise time。
- """
- if self.df_ica.empty:
- self.result['value'] = [0.0]
- print(f"Rise time: 0")
- else:
- first_change_index = self._get_first_change_index_THW()
- set_headway_time = self.df_ica.loc[first_change_index, 'set_headway_time']
- self._find_stable_THW(window_size=4, percent_deviation=5, set_value=set_headway_time)
- initial_THW = self.df_ica.loc[first_change_index, 'THW']
- if self.stable_average_THW:
- target_THW_90 = initial_THW + (self.stable_average_THW - initial_THW) * 0.9
- target_THW_10 = initial_THW + (self.stable_average_THW - initial_THW) * 0.1
- timestamp_at_10 = self._find_closest_time_stamp_THW(self.df_ica, target_THW_10, first_change_index)
- timestamp_at_90 = self._find_closest_time_stamp_THW(self.df_ica, target_THW_90, first_change_index)
- print(f"Closest speed at 10% range from set speed: {timestamp_at_10}")
- print(f"Closest speed at 90% range from set speed: {timestamp_at_90}")
- self.rise_time_THW = timestamp_at_90 - timestamp_at_10
- else:
- self.rise_time_THW = Max_Time
- self.result['value'] = [round(self.rise_time_THW, 3)]
- print(f"Rise time: {self.rise_time_THW}")
- def markline_statistic(self):
- pass
- def report_data_statistic(self):
- # time_list = self.ego_df['simTime'].values.tolist()
- # graph_list = [x for x in self.graph_list if not np.isnan(x)]
- self.result['tableData']['avg'] = self.result['value'][0] if not self.df_ica.empty else '-'
- self.result['tableData']['max'] = '-'
- self.result['tableData']['min'] = '-'
- # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
- self.result['reportData']['data'] = []
- # self.markline_statistic()
- # markline_slices = self.markline_df.to_dict('records')
- self.result['reportData']['markLine'] = []
- self.result['reportData']['range'] = [0, 1.2]
- def run(self):
- # logger.info(f"Custom metric run:[{self.result['name']}].")
- logger.info(f"[case:{self.case_name}] Custom metric:[rise_time_THW:{self.result['name']}] evaluate.")
- try:
- self.data_extract()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
- try:
- self.data_analyze()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
- try:
- self.report_data_statistic()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
- # if __name__ == "__main__":
- # pass
|