cicv_ica_longitudinal_control07_rise_time_THW_new.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen, yangzihao
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. """
  17. import math
  18. import pandas as pd
  19. import numpy as np
  20. from common import zip_time_pairs, continuous_group, get_status_active_data, _cal_THW, _cal_v_ego_projection
  21. from log import logger
  22. """import functions"""
  23. # custom metric codes
  24. Max_Time = 1000
  25. class CustomMetric(object):
  26. def __init__(self, all_data, case_name):
  27. self.data = all_data
  28. self.optimal_dict = self.data.config
  29. self.status_trigger_dict = self.data.status_trigger_dict
  30. self.case_name = case_name
  31. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  32. self.graph_list = []
  33. self.df = pd.DataFrame()
  34. self.ego_df = pd.DataFrame()
  35. self.df_ica = pd.DataFrame()
  36. # self.stable_start_time_THW = None
  37. self.stable_average_THW = None
  38. self.rise_time_THW = None
  39. self.result = {
  40. "name": "跟车上升时间",
  41. "value": [],
  42. # "weight": [],
  43. "tableData": {
  44. "avg": "", # 平均值,或指标值
  45. "max": "",
  46. "min": ""
  47. },
  48. "reportData": {
  49. "name": "跟车上升时间(s)",
  50. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  51. "data": [],
  52. "markLine": [],
  53. "range": [],
  54. },
  55. "statusFlag": {}
  56. }
  57. self.run()
  58. print(f"跟车上升时间: {self.result['value']}")
  59. def data_extract(self):
  60. self.df = self.data.object_df
  61. self.ego_df = self.data.ego_data
  62. active_time_ranges = self.status_trigger_dict['ICA']['ICA_follow_time']
  63. self.df_ica = get_status_active_data(active_time_ranges, self.ego_df)
  64. # self.df_ica = self.ego_df[self.ego_df['ICA_status'] == "LLC_Follow_Vehicle"].copy() # 数字3对应ICA的Active
  65. # self.df_ica = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  66. # self.df_ica = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  67. if self.df_ica.empty:
  68. self.result['statusFlag']['function_ICA'] = False
  69. else:
  70. self.result['statusFlag']['function_ICA'] = True
  71. def _get_first_change_index_THW(self):
  72. """
  73. 获取DataFrame中'set_headway_time'列首次发生变化的索引值。
  74. Args:
  75. 无参数。
  76. Returns:
  77. Union[int, None]: 如果存在变化,则返回首次发生变化的索引值(int类型),否则返回None。
  78. """
  79. change_indices = self.df_ica[self.df_ica['set_headway_time'] != self.df_ica['set_headway_time'].shift()].index
  80. if not change_indices.empty:
  81. first_change_index = change_indices.min()
  82. else:
  83. first_change_index = None
  84. return first_change_index
  85. def _find_stable_THW(self, window_size, percent_deviation, set_value):
  86. """
  87. 在给定的数据窗口中查找稳定跟车时距离THW,并计算该段内THW的平均值。
  88. Args:
  89. window_size (int): 窗口大小,表示在数据中寻找稳定段时考虑的连续数据点数量。
  90. percent_deviation (float): THW值相对于设定值的允许偏差百分比。
  91. set_value (float): THW的设定值。
  92. Returns:
  93. None
  94. """
  95. ego_x = self.df_ica[self.df_ica['playerId'] == 1]['posX'].reset_index(drop=True)
  96. ego_y = self.df_ica[self.df_ica['playerId'] == 1]['posY'].reset_index(drop=True)
  97. obj_x = self.df_ica[self.df_ica['playerId'] == 2]['posX'].reset_index(drop=True)
  98. obj_y = self.df_ica[self.df_ica['playerId'] == 2]['posY'].reset_index(drop=True)
  99. ego_speedx = self.df_ica[self.df_ica['playerId'] == 1]['speedX'].reset_index(drop=True)
  100. ego_speedy = self.df_ica[self.df_ica['playerId'] == 1]['speedY'].reset_index(drop=True)
  101. obj_speedx = self.df_ica[self.df_ica['playerId'] == 2]['speedX'].reset_index(drop=True)
  102. obj_speedy = self.df_ica[self.df_ica['playerId'] == 2]['speedY'].reset_index(drop=True)
  103. dx = obj_x - ego_x
  104. dy = obj_y - ego_y
  105. vx = obj_speedx - ego_speedx
  106. vy = obj_speedy - ego_speedy
  107. dist = np.sqrt(dx ** 2 + dy ** 2)
  108. ego_v_projection_in_dist = _cal_v_ego_projection(dx, dy, ego_speedx, ego_speedy)
  109. thw1 = _cal_THW(dist, ego_v_projection_in_dist)
  110. thw = thw1.tolist()
  111. THW = []
  112. for item in thw:
  113. THW.append(item)
  114. THW.append(item)
  115. self.df_ica['THW'] = THW
  116. THW = self.df_ica['THW'].values
  117. deviation = set_value * (percent_deviation / 100)
  118. stable_start = None
  119. stable_average_THW = None
  120. for i in range(len(THW) - window_size + 1):
  121. window_data = THW[i:i + window_size]
  122. if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
  123. if stable_start is None:
  124. stable_start = i
  125. stable_end = i + window_size - 1
  126. stable_average_THW = np.mean(window_data)
  127. j = i + window_size
  128. while j < len(THW) - window_size + 1:
  129. next_window_data = THW[j:j + window_size]
  130. if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
  131. stable_end = j + window_size - 1
  132. stable_average_THW = (stable_average_THW * (j - stable_start) + sum(next_window_data)) / (
  133. j - stable_start + window_size)
  134. j += window_size
  135. else:
  136. stable_start = j + window_size - 1
  137. stable_end = i + window_size - 1
  138. stable_average_THW = np.mean(window_data)
  139. break
  140. # self.stable_start_time_THW = self.df_ica['simTime'].iloc[stable_start]
  141. self.stable_average_THW = stable_average_THW
  142. def _find_closest_time_stamp_THW(self, df, target_THW, start_index):
  143. """
  144. 在DataFrame中找到与目标THW值最接近的时间戳。
  145. Args:
  146. df (pandas.DataFrame): 包含'THW'和'simTime'列的DataFrame,其中'THW'表示目标变量,'simTime'表示时间戳。
  147. target_THW (float): 目标THW值。
  148. start_index (int): 开始搜索的索引位置(不包含)。
  149. Returns:
  150. pandas.Timestamp: 与目标THW值最接近的时间戳。
  151. """
  152. subset = df.loc[start_index + 1:]
  153. THW_diff = np.abs(subset['THW'] - target_THW)
  154. closest_index = THW_diff.idxmin()
  155. closest_timestamp = subset.loc[closest_index, 'simTime']
  156. return closest_timestamp
  157. def data_analyze(self):
  158. """
  159. 计算巡航时从初THW到达稳定THW的90%的所需时间(rise time)。
  160. Args:
  161. 无。
  162. Returns:
  163. 无返回值,但会设置实例属性self.rise_time_THW为计算得到的rise time。
  164. """
  165. if self.df_ica.empty:
  166. self.result['value'] = [0.0]
  167. print(f"Rise time: 0")
  168. else:
  169. first_change_index = self._get_first_change_index_THW()
  170. set_headway_time = self.df_ica.loc[first_change_index, 'set_headway_time']
  171. self._find_stable_THW(window_size=4, percent_deviation=5, set_value=set_headway_time)
  172. initial_THW = self.df_ica.loc[first_change_index, 'THW']
  173. if self.stable_average_THW:
  174. target_THW_90 = initial_THW + (self.stable_average_THW - initial_THW) * 0.9
  175. target_THW_10 = initial_THW + (self.stable_average_THW - initial_THW) * 0.1
  176. timestamp_at_10 = self._find_closest_time_stamp_THW(self.df_ica, target_THW_10, first_change_index)
  177. timestamp_at_90 = self._find_closest_time_stamp_THW(self.df_ica, target_THW_90, first_change_index)
  178. print(f"Closest speed at 10% range from set speed: {timestamp_at_10}")
  179. print(f"Closest speed at 90% range from set speed: {timestamp_at_90}")
  180. self.rise_time_THW = timestamp_at_90 - timestamp_at_10
  181. else:
  182. self.rise_time_THW = Max_Time
  183. self.result['value'] = [round(self.rise_time_THW, 3)]
  184. print(f"Rise time: {self.rise_time_THW}")
  185. def markline_statistic(self):
  186. pass
  187. def report_data_statistic(self):
  188. # time_list = self.ego_df['simTime'].values.tolist()
  189. # graph_list = [x for x in self.graph_list if not np.isnan(x)]
  190. self.result['tableData']['avg'] = self.result['value'][0] if not self.df_ica.empty else '-'
  191. self.result['tableData']['max'] = '-'
  192. self.result['tableData']['min'] = '-'
  193. # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
  194. self.result['reportData']['data'] = []
  195. # self.markline_statistic()
  196. # markline_slices = self.markline_df.to_dict('records')
  197. self.result['reportData']['markLine'] = []
  198. self.result['reportData']['range'] = [0, 1.2]
  199. def run(self):
  200. # logger.info(f"Custom metric run:[{self.result['name']}].")
  201. logger.info(f"[case:{self.case_name}] Custom metric:[rise_time_THW:{self.result['name']}] evaluate.")
  202. try:
  203. self.data_extract()
  204. except Exception as e:
  205. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  206. try:
  207. self.data_analyze()
  208. except Exception as e:
  209. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  210. try:
  211. self.report_data_statistic()
  212. except Exception as e:
  213. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  214. # if __name__ == "__main__":
  215. # pass