123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: zhangyu
- @Data: 2024/02/21
- @Last Modified: 2024/02/21
- @Summary: The template of custom indicator.
- """
- """
- 设计思路:
- 车道宽度:3.75m
- 车宽:1.8m
- 车的一边距离车道边界线为0.975m为最佳,值越小,分值越低
- """
- import math
- import pandas as pd
- import numpy as np
- from common import zip_time_pairs, continuous_group, get_status_active_data
- from log import logger
- """import functions"""
- # custom metric codes
- class CustomMetric(object):
- def __init__(self, all_data, case_name):
- self.data = all_data
- self.optimal_dict = self.data.config
- self.status_trigger_dict = self.data.status_trigger_dict
- self.case_name = case_name
- self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
- self.df = pd.DataFrame()
- self.ego_df = pd.DataFrame()
- self.df_ego = pd.DataFrame()
- self.roadMark_df = pd.DataFrame()
- self.time_list_follow = list()
- self.frame_list_follow = list()
- self.dist_list = list()
- self.dist_deviation_list = list()
- self.dist_deviation_list_full_time = list()
- self.result = {
- "name": "离近侧车道线最小距离",
- "value": [],
- # "weight": [],
- "tableData": {
- "avg": "", # 平均值,或指标值
- "max": "",
- "min": ""
- },
- "reportData": {
- "name": "离近侧车道线最小距离(m)",
- # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
- "data": [],
- "markLine": [],
- "range": [],
- },
- "statusFlag": {}
- }
- self.run()
- print(f"指标01: 离近侧车道线最小距离: {self.result['value']}")
- def data_extract(self):
- self.df = self.data.object_df
- self.ego_df = self.data.object_df[self.data.object_df.playerId == 1]
- # new active get code
- active_time_ranges = self.status_trigger_dict['LKA']['LKA_active_time']
- self.df_ego = get_status_active_data(active_time_ranges, self.ego_df)
- self.roadMark_df = get_status_active_data(active_time_ranges, self.data.road_mark_df)
- # self.df_ego = self.df[self.df['LKA_status'] == "Active"].copy() # 数字3对应LKA的Active
- # self.roadMark_df = self.data.road_mark_df
- if self.df_ego.empty:
- self.result['statusFlag']['function_LKA'] = False
- else:
- self.result['statusFlag']['function_LKA'] = True
- def dist(self, x1, y1, x2, y2):
- dis = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
- return dis
- def Compute_nearby_distance_to_lane_boundary(self, x, width_ego):
- if x.lateralDist < abs(x.right_lateral_distance):
- return x.lateralDist - width_ego / 2
- else:
- return abs(x.right_lateral_distance) - width_ego / 2
- def data_analyze(self):
- # 提取自车宽度
- roadMark_df = self.roadMark_df
- ego_df = self.df_ego
- # ego_df = player_df[player_df.playerId == 1]
- width_ego = ego_df['dimY'].values.tolist()[0]
- # 提取距离左车道线和右车道线距离
- # roadMark_df['nearby_distance']
- roadMark_left_df = roadMark_df[roadMark_df.id == 0].reset_index(drop=True)
- roadMark_right_df = roadMark_df[roadMark_df.id == 2].reset_index(drop=True)
- roadMark_left_df['right_lateral_distance'] = roadMark_right_df['lateralDist']
- # 计算到车道边界线距离
- roadMark_left_df['nearby_distance_to_lane_boundary'] = roadMark_left_df.apply(
- lambda x: self.Compute_nearby_distance_to_lane_boundary(x, width_ego), axis=1)
- nearby_distance_to_lane_boundary = min(roadMark_left_df['nearby_distance_to_lane_boundary'])
- self.result['value'] = [round(nearby_distance_to_lane_boundary, 3)]
- self.time_list_follow = roadMark_left_df['simTime'].values.tolist()
- self.frame_list_follow = roadMark_left_df['simFrame'].values.tolist()
- self.dist_deviation_list = roadMark_left_df['nearby_distance_to_lane_boundary'].values.tolist()
- # print("hello world")
- def markline_statistic(self):
- unfunc_df = pd.DataFrame({'simTime': self.time_list_follow, 'simFrame': self.frame_list_follow,
- 'dist_deviation': self.dist_deviation_list})
- unfunc_df = unfunc_df[unfunc_df['simFrame'] > 1]
- v_df = unfunc_df[unfunc_df['dist_deviation'] > 0]
- v_df = v_df[['simTime', 'simFrame', 'dist_deviation']]
- v_follow_df = continuous_group(v_df)
- v_follow_df['type'] = "LKA"
- self.markline_df = pd.concat([self.markline_df, v_follow_df], ignore_index=True)
- def report_data_statistic(self):
- time_list = self.ego_df['simTime'].values.tolist()
- graph_list = [x for x in self.dist_deviation_list if not np.isnan(x)]
- self.result['tableData']['avg'] = f'{np.mean(graph_list):.3f}' if graph_list else 0
- self.result['tableData']['max'] = f'{max(graph_list):.3f}' if graph_list else 0
- self.result['tableData']['min'] = f'{min(graph_list):.3f}' if graph_list else 0
- zip_vs_time = zip_time_pairs(time_list, self.dist_deviation_list)
- self.result['reportData']['data'] = zip_vs_time
- self.markline_statistic()
- markline_slices = self.markline_df.to_dict('records')
- self.result['reportData']['markLine'] = markline_slices
- self.result['reportData']['range'] = f"[0, 0.975]"
- def run(self):
- # logger.info(f"Custom metric run:[{self.result['name']}].")
- logger.info(f"[case:{self.case_name}] Custom metric:[ica_distance_deviation:{self.result['name']}] evaluate.")
- try:
- self.data_extract()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
- try:
- self.data_analyze()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
- try:
- self.report_data_statistic()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
- # if __name__ == "__main__":
- # pass
|