cicv_LKA_01_distance_nearby_lane.py 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhangyu
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. 车道宽度:3.75m
  17. 车宽:1.8m
  18. 车的一边距离车道边界线为0.975m为最佳,值越小,分值越低
  19. """
  20. import math
  21. import pandas as pd
  22. import numpy as np
  23. from common import zip_time_pairs, continuous_group, get_status_active_data
  24. from log import logger
  25. """import functions"""
  26. # custom metric codes
  27. class CustomMetric(object):
  28. def __init__(self, all_data, case_name):
  29. self.data = all_data
  30. self.optimal_dict = self.data.config
  31. self.status_trigger_dict = self.data.status_trigger_dict
  32. self.case_name = case_name
  33. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  34. self.df = pd.DataFrame()
  35. self.ego_df = pd.DataFrame()
  36. self.df_ego = pd.DataFrame()
  37. self.roadMark_df = pd.DataFrame()
  38. self.time_list_follow = list()
  39. self.frame_list_follow = list()
  40. self.dist_list = list()
  41. self.dist_deviation_list = list()
  42. self.dist_deviation_list_full_time = list()
  43. self.result = {
  44. "name": "离近侧车道线最小距离",
  45. "value": [],
  46. # "weight": [],
  47. "tableData": {
  48. "avg": "", # 平均值,或指标值
  49. "max": "",
  50. "min": ""
  51. },
  52. "reportData": {
  53. "name": "离近侧车道线最小距离(m)",
  54. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  55. "data": [],
  56. "markLine": [],
  57. "range": [],
  58. },
  59. "statusFlag": {}
  60. }
  61. self.run()
  62. print(f"指标01: 离近侧车道线最小距离: {self.result['value']}")
  63. def data_extract(self):
  64. self.df = self.data.object_df
  65. self.ego_df = self.data.object_df[self.data.object_df.playerId == 1]
  66. # new active get code
  67. active_time_ranges = self.status_trigger_dict['LKA']['LKA_active_time']
  68. self.df_ego = get_status_active_data(active_time_ranges, self.ego_df)
  69. self.roadMark_df = get_status_active_data(active_time_ranges, self.data.road_mark_df)
  70. # self.df_ego = self.df[self.df['LKA_status'] == "Active"].copy() # 数字3对应LKA的Active
  71. # self.roadMark_df = self.data.road_mark_df
  72. if self.df_ego.empty:
  73. self.result['statusFlag']['function_LKA'] = False
  74. else:
  75. self.result['statusFlag']['function_LKA'] = True
  76. def dist(self, x1, y1, x2, y2):
  77. dis = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
  78. return dis
  79. def Compute_nearby_distance_to_lane_boundary(self, x, width_ego):
  80. if x.lateralDist < abs(x.right_lateral_distance):
  81. return x.lateralDist - width_ego / 2
  82. else:
  83. return abs(x.right_lateral_distance) - width_ego / 2
  84. def data_analyze(self):
  85. # 提取自车宽度
  86. roadMark_df = self.roadMark_df
  87. ego_df = self.df_ego
  88. # ego_df = player_df[player_df.playerId == 1]
  89. width_ego = ego_df['dimY'].values.tolist()[0]
  90. # 提取距离左车道线和右车道线距离
  91. # roadMark_df['nearby_distance']
  92. roadMark_left_df = roadMark_df[roadMark_df.id == 0].reset_index(drop=True)
  93. roadMark_right_df = roadMark_df[roadMark_df.id == 2].reset_index(drop=True)
  94. roadMark_left_df['right_lateral_distance'] = roadMark_right_df['lateralDist']
  95. # 计算到车道边界线距离
  96. roadMark_left_df['nearby_distance_to_lane_boundary'] = roadMark_left_df.apply(
  97. lambda x: self.Compute_nearby_distance_to_lane_boundary(x, width_ego), axis=1)
  98. nearby_distance_to_lane_boundary = min(roadMark_left_df['nearby_distance_to_lane_boundary'])
  99. self.result['value'] = [round(nearby_distance_to_lane_boundary, 3)]
  100. self.time_list_follow = roadMark_left_df['simTime'].values.tolist()
  101. self.frame_list_follow = roadMark_left_df['simFrame'].values.tolist()
  102. self.dist_deviation_list = roadMark_left_df['nearby_distance_to_lane_boundary'].values.tolist()
  103. # print("hello world")
  104. def markline_statistic(self):
  105. unfunc_df = pd.DataFrame({'simTime': self.time_list_follow, 'simFrame': self.frame_list_follow,
  106. 'dist_deviation': self.dist_deviation_list})
  107. unfunc_df = unfunc_df[unfunc_df['simFrame'] > 1]
  108. v_df = unfunc_df[unfunc_df['dist_deviation'] > 0]
  109. v_df = v_df[['simTime', 'simFrame', 'dist_deviation']]
  110. v_follow_df = continuous_group(v_df)
  111. v_follow_df['type'] = "LKA"
  112. self.markline_df = pd.concat([self.markline_df, v_follow_df], ignore_index=True)
  113. def report_data_statistic(self):
  114. time_list = self.ego_df['simTime'].values.tolist()
  115. graph_list = [x for x in self.dist_deviation_list if not np.isnan(x)]
  116. self.result['tableData']['avg'] = f'{np.mean(graph_list):.3f}' if graph_list else 0
  117. self.result['tableData']['max'] = f'{max(graph_list):.3f}' if graph_list else 0
  118. self.result['tableData']['min'] = f'{min(graph_list):.3f}' if graph_list else 0
  119. zip_vs_time = zip_time_pairs(time_list, self.dist_deviation_list)
  120. self.result['reportData']['data'] = zip_vs_time
  121. self.markline_statistic()
  122. markline_slices = self.markline_df.to_dict('records')
  123. self.result['reportData']['markLine'] = markline_slices
  124. self.result['reportData']['range'] = f"[0, 0.975]"
  125. def run(self):
  126. # logger.info(f"Custom metric run:[{self.result['name']}].")
  127. logger.info(f"[case:{self.case_name}] Custom metric:[ica_distance_deviation:{self.result['name']}] evaluate.")
  128. try:
  129. self.data_extract()
  130. except Exception as e:
  131. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  132. try:
  133. self.data_analyze()
  134. except Exception as e:
  135. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  136. try:
  137. self.report_data_statistic()
  138. except Exception as e:
  139. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  140. # if __name__ == "__main__":
  141. # pass