cicv_acc_01_delay_time_cruise_new.py 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen, yangzihao
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. """
  17. import math
  18. import pandas as pd
  19. import numpy as np
  20. from common import zip_time_pairs, continuous_group, get_status_active_data
  21. from log import logger
  22. """import functions"""
  23. Max_Time = 1000
  24. # custom metric codes
  25. class CustomMetric(object):
  26. def __init__(self, all_data, case_name):
  27. self.data = all_data
  28. self.optimal_dict = self.data.config
  29. self.status_trigger_dict = self.data.status_trigger_dict
  30. self.case_name = case_name
  31. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  32. self.graph_list = []
  33. self.df = pd.DataFrame()
  34. self.ego_df = pd.DataFrame()
  35. self.df_acc = pd.DataFrame()
  36. # self.stable_start_time_cruise = None
  37. self.stable_average_speed = None
  38. self.delay_time_cruise = None
  39. self.result = {
  40. "name": "定速巡航延迟时间",
  41. "value": [],
  42. # "weight": [],
  43. "tableData": {
  44. "avg": "", # 平均值,或指标值
  45. "max": "",
  46. "min": ""
  47. },
  48. "reportData": {
  49. "name": "定速巡航延迟时间(s)",
  50. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  51. "data": [],
  52. "markLine": [],
  53. "range": [],
  54. },
  55. "statusFlag": {}
  56. }
  57. self.run()
  58. print(f"定速巡航延迟时间: {self.result['value']}")
  59. def data_extract(self):
  60. self.df = self.data.object_df
  61. self.ego_df = self.data.ego_data
  62. active_time_ranges = self.status_trigger_dict['ACC']['ACC_active_time']
  63. self.df_acc = get_status_active_data(active_time_ranges, self.ego_df)
  64. # self.df_acc = self.ego_df[self.ego_df['ICA_status'] == "LLC_Follow_Line"].copy() # 数字3对应ICA的 LLC_Follow_Line
  65. # self.df_acc = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  66. # self.df_acc = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  67. if self.df_acc.empty:
  68. self.result['statusFlag']['function_ACC'] = False
  69. else:
  70. self.result['statusFlag']['function_ACC'] = True
  71. def _find_stable_speed_cruise(self, window_size, percent_deviation, set_value):
  72. """
  73. 在给定的速度数据中查找稳定的巡航速度段,并计算该段的平均速度。
  74. Args:
  75. window_size (int): 滑动窗口的大小,表示用于计算平均速度的速度数据点数量。
  76. percent_deviation (float): 设定值的允许偏差百分比。
  77. set_value (float): 期望的稳定速度设定值。
  78. Returns:
  79. None
  80. """
  81. # speed_data = self.df['speedX'].values
  82. speed_data = self.df_acc['speedX'].values # .tolist()
  83. deviation = set_value * (percent_deviation / 100)
  84. stable_start = None
  85. stable_average_speed = None
  86. for i in range(len(speed_data) - window_size + 1):
  87. window_data = speed_data[i:i + window_size]
  88. if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
  89. if stable_start is None:
  90. stable_start = i
  91. stable_end = i + window_size - 1
  92. stable_average_speed = np.mean(window_data)
  93. j = i + window_size
  94. while j < len(speed_data) - window_size + 1:
  95. next_window_data = speed_data[j:j + window_size]
  96. if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
  97. stable_end = j + window_size - 1
  98. stable_average_speed = (stable_average_speed * (j - stable_start) + sum(next_window_data)) / (
  99. j - stable_start + window_size)
  100. j += window_size
  101. else:
  102. stable_start = j + window_size - 1
  103. stable_end = i + window_size - 1
  104. stable_average_speed = np.mean(window_data)
  105. break
  106. # self.stable_start_time_cruise = self.df['simTime'].iloc[stable_start]
  107. self.stable_average_speed = stable_average_speed
  108. def data_analyze(self):
  109. change_indices = self.df_acc[self.df_acc['set_cruise_speed'] != self.df_acc['set_cruise_speed'].shift()].index
  110. print(f"Change indices of set speed: {change_indices}")
  111. set_cruise_speed = self.df_acc.loc[change_indices[0], 'set_cruise_speed']
  112. self._find_stable_speed_cruise(window_size=4, percent_deviation=5, set_value=set_cruise_speed)
  113. if not change_indices.empty:
  114. first_change_index = change_indices[change_indices != 0].min()
  115. set_cruise_speed_at_change = self.df_acc.loc[first_change_index, 'set_cruise_speed']
  116. timestamp_at_change = self.df_acc.loc[first_change_index, 'simTime']
  117. print(f"Set speed at first change: {set_cruise_speed_at_change}, Timestamp: {timestamp_at_change}")
  118. if self.stable_average_speed:
  119. target_speed = (self.stable_average_speed + self.df_acc.loc[first_change_index, 'speedX']) / 2
  120. closest_index = (self.df_acc['speedX'] - target_speed).abs().idxmin()
  121. closest_current_speed = self.df_acc.loc[closest_index, 'speedX']
  122. closest_timestamp = self.df_acc.loc[closest_index, 'simTime']
  123. print(f"Closest speed: {closest_current_speed} at time: {closest_timestamp}")
  124. self.delay_time_cruise = closest_timestamp - timestamp_at_change
  125. self.result['value'] = [round(self.delay_time_cruise, 3)]
  126. print(f"Delay time: {self.delay_time_cruise}")
  127. else:
  128. self.delay_time_cruise = Max_Time
  129. self.result['value'] = [round(self.delay_time_cruise, 3)]
  130. print("No valid stable speed found.")
  131. else:
  132. self.delay_time_cruise = Max_Time
  133. self.result['value'] = [round(self.delay_time_cruise, 3)]
  134. print("No valid change point for further calculation.")
  135. def markline_statistic(self):
  136. pass
  137. def report_data_statistic(self):
  138. # time_list = self.ego_df['simTime'].values.tolist()
  139. # graph_list = [x for x in self.graph_list if not np.isnan(x)]
  140. self.result['tableData']['avg'] = self.result['value'][0] if not self.df_acc.empty else '-'
  141. self.result['tableData']['max'] = '-'
  142. self.result['tableData']['min'] = '-'
  143. # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
  144. self.result['reportData']['data'] = []
  145. # self.markline_statistic()
  146. # markline_slices = self.markline_df.to_dict('records')
  147. self.result['reportData']['markLine'] = []
  148. self.result['reportData']['range'] = [0, 1.2]
  149. def run(self):
  150. # logger.info(f"Custom metric run:[{self.result['name']}].")
  151. logger.info(f"[case:{self.case_name}] Custom metric:[delay_time_cruise:{self.result['name']}] evaluate.")
  152. try:
  153. self.data_extract()
  154. except Exception as e:
  155. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  156. try:
  157. self.data_analyze()
  158. except Exception as e:
  159. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  160. try:
  161. self.report_data_statistic()
  162. except Exception as e:
  163. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  164. # if __name__ == "__main__":
  165. # pass