cicv_ica_longitudinal_control03_peak_time_cruise_new.py 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen, yangzihao
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. """
  17. import math
  18. import pandas as pd
  19. import numpy as np
  20. from common import zip_time_pairs, continuous_group, get_status_active_data
  21. from log import logger
  22. """import functions"""
  23. # custom metric codes
  24. class CustomMetric(object):
  25. def __init__(self, all_data, case_name):
  26. self.data = all_data
  27. self.optimal_dict = self.data.config
  28. self.status_trigger_dict = self.data.status_trigger_dict
  29. self.case_name = case_name
  30. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  31. self.graph_list = []
  32. self.df = pd.DataFrame()
  33. self.ego_df = pd.DataFrame()
  34. self.df_ica = pd.DataFrame()
  35. self.peak_time_cruise = None
  36. self.result = {
  37. "name": "定速巡航峰值时间",
  38. "value": [],
  39. # "weight": [],
  40. "tableData": {
  41. "avg": "", # 平均值,或指标值
  42. "max": "",
  43. "min": ""
  44. },
  45. "reportData": {
  46. "name": "定速巡航峰值时间(s)",
  47. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  48. "data": [],
  49. "markLine": [],
  50. "range": [],
  51. },
  52. "statusFlag": {}
  53. }
  54. self.run()
  55. print(f"定速巡航峰值时间: {self.result['value']}")
  56. def data_extract(self):
  57. self.df = self.data.object_df
  58. self.ego_df = self.data.ego_data
  59. active_time_ranges = self.status_trigger_dict['ICA']['ICA_cruise_time']
  60. self.df_ica = get_status_active_data(active_time_ranges, self.ego_df)
  61. # self.df_ica = self.ego_df[self.ego_df['ICA_status'] == "LLC_Follow_Line"].copy() # 数字3对应ICA的Active
  62. # self.df_ica = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  63. # self.df_ica = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  64. if self.df_ica.empty:
  65. self.result['statusFlag']['function_ICA'] = False
  66. else:
  67. self.result['statusFlag']['function_ICA'] = True
  68. def _get_first_change_index_cruise(self):
  69. """
  70. 获取数据集中第一次巡航速度发生变化的索引。
  71. Args:
  72. 无参数。
  73. Returns:
  74. Union[int, None]: 如果存在巡航速度发生变化的索引,则返回第一个发生变化的索引(int类型);
  75. 如果不存在,则返回None。
  76. """
  77. change_indices = self.df_ica[self.df_ica['set_cruise_speed'] != self.df_ica['set_cruise_speed'].shift()].index
  78. if not change_indices.empty:
  79. first_change_index = change_indices.min()
  80. else:
  81. first_change_index = None
  82. return first_change_index
  83. def data_analyze(self):
  84. if not self.df_ica.empty:
  85. first_change_index = self._get_first_change_index_cruise()
  86. if not first_change_index:
  87. self.peak_time_cruise = 0
  88. self.result['value'] = [round(self.peak_time_cruise, 3)]
  89. print(f"peak_time_cruise: {self.peak_time_cruise}")
  90. else:
  91. start_time = self.df_ica.loc[first_change_index, 'simTime']
  92. peak_time = self.df_ica.loc[self.df_ica['speedX'].idxmax(), 'simTime']
  93. self.peak_time_cruise = peak_time - start_time
  94. self.result['value'] = [round(self.peak_time_cruise, 3)]
  95. print(f"peak_time_cruise: {self.peak_time_cruise}")
  96. else:
  97. self.peak_time_cruise = 1000
  98. self.result['value'] = [1000]
  99. print(f"peak_time_cruise: {self.peak_time_cruise}")
  100. def markline_statistic(self):
  101. pass
  102. def report_data_statistic(self):
  103. # time_list = self.ego_df['simTime'].values.tolist()
  104. # graph_list = [x for x in self.graph_list if not np.isnan(x)]
  105. self.result['tableData']['avg'] = self.result['value'][0] if not self.df_ica.empty else '-'
  106. self.result['tableData']['max'] = '-'
  107. self.result['tableData']['min'] = '-'
  108. # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
  109. self.result['reportData']['data'] = []
  110. # self.markline_statistic()
  111. # markline_slices = self.markline_df.to_dict('records')
  112. self.result['reportData']['markLine'] = []
  113. self.result['reportData']['range'] = [0, 1.2]
  114. def run(self):
  115. # logger.info(f"Custom metric run:[{self.result['name']}].")
  116. logger.info(f"[case:{self.case_name}] Custom metric:[peak_time_cruise:{self.result['name']}] evaluate.")
  117. try:
  118. self.data_extract()
  119. except Exception as e:
  120. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  121. try:
  122. self.data_analyze()
  123. except Exception as e:
  124. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  125. try:
  126. self.report_data_statistic()
  127. except Exception as e:
  128. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  129. # if __name__ == "__main__":
  130. # pass