cicv_ica_longitudinal_control06_delay_time_THW_new.py 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen, yangzihao
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. """
  17. import math
  18. import pandas as pd
  19. import numpy as np
  20. from common import zip_time_pairs, continuous_group, get_status_active_data, _cal_THW, _cal_v_ego_projection
  21. from log import logger
  22. """import functions"""
  23. # custom metric codes
  24. Max_Time = 1000
  25. class CustomMetric(object):
  26. def __init__(self, all_data, case_name):
  27. self.data = all_data
  28. self.optimal_dict = self.data.config
  29. self.status_trigger_dict = self.data.status_trigger_dict
  30. self.case_name = case_name
  31. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  32. self.graph_list = []
  33. self.df = pd.DataFrame()
  34. self.ego_df = pd.DataFrame()
  35. self.df_ica = pd.DataFrame()
  36. # self.stable_start_time_THW = None
  37. self.stable_average_THW = None
  38. self.delay_time_THW = Max_Time
  39. self.result = {
  40. "name": "跟车延迟时间",
  41. "value": [],
  42. # "weight": [],
  43. "tableData": {
  44. "avg": "", # 平均值,或指标值
  45. "max": "",
  46. "min": ""
  47. },
  48. "reportData": {
  49. "name": "跟车延迟时间(s)",
  50. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  51. "data": [],
  52. "markLine": [],
  53. "range": [],
  54. },
  55. "statusFlag": {}
  56. }
  57. self.run()
  58. print(f"跟车延迟时间: {self.result['value']}")
  59. def data_extract(self):
  60. self.df = self.data.object_df
  61. self.ego_df = self.data.ego_data
  62. active_time_ranges = self.status_trigger_dict['ICA']['ICA_follow_time']
  63. self.df_ica = get_status_active_data(active_time_ranges, self.ego_df)
  64. # self.df_ica = self.ego_df[self.ego_df['ICA_status'] == "LLC_Follow_Vehicle"].copy() # 数字3对应ICA的Active
  65. # self.df_ica = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  66. # self.df_ica = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  67. if self.df_ica.empty:
  68. self.result['statusFlag']['function_ICA'] = False
  69. else:
  70. self.result['statusFlag']['function_ICA'] = True
  71. def _find_stable_THW(self, window_size, percent_deviation, set_value):
  72. """
  73. 在给定的数据窗口中查找稳定跟车时距离THW,并计算该段内THW的平均值。
  74. Args:
  75. window_size (int): 窗口大小,表示在数据中寻找稳定段时考虑的连续数据点数量。
  76. percent_deviation (float): THW值相对于设定值的允许偏差百分比。
  77. set_value (float): THW的设定值。
  78. Returns:
  79. None
  80. """
  81. ego_x = self.df_ica[self.df_ica['playerId'] == 1]['posX'].reset_index(drop=True)
  82. ego_y = self.df_ica[self.df_ica['playerId'] == 1]['posY'].reset_index(drop=True)
  83. obj_x = self.df_ica[self.df_ica['playerId'] == 2]['posX'].reset_index(drop=True)
  84. obj_y = self.df_ica[self.df_ica['playerId'] == 2]['posY'].reset_index(drop=True)
  85. ego_speedx = self.df_ica[self.df_ica['playerId'] == 1]['speedX'].reset_index(drop=True)
  86. ego_speedy = self.df_ica[self.df_ica['playerId'] == 1]['speedY'].reset_index(drop=True)
  87. obj_speedx = self.df_ica[self.df_ica['playerId'] == 2]['speedX'].reset_index(drop=True)
  88. obj_speedy = self.df_ica[self.df_ica['playerId'] == 2]['speedY'].reset_index(drop=True)
  89. dx = obj_x - ego_x
  90. dy = obj_y - ego_y
  91. vx = obj_speedx - ego_speedx
  92. vy = obj_speedy - ego_speedy
  93. dist = np.sqrt(dx ** 2 + dy ** 2)
  94. ego_v_projection_in_dist = _cal_v_ego_projection(dx, dy, ego_speedx, ego_speedy)
  95. thw1 = _cal_THW(dist, ego_v_projection_in_dist)
  96. thw = thw1.tolist()
  97. THW = []
  98. for item in thw:
  99. THW.append(item)
  100. THW.append(item)
  101. self.df_ica['THW'] = THW
  102. THW = self.df_ica['THW'].values
  103. deviation = set_value * (percent_deviation / 100)
  104. stable_start = None
  105. stable_average_THW = None
  106. for i in range(len(THW) - window_size + 1):
  107. window_data = THW[i:i + window_size]
  108. if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
  109. if stable_start is None:
  110. stable_start = i
  111. stable_end = i + window_size - 1
  112. stable_average_THW = np.mean(window_data)
  113. j = i + window_size
  114. while j < len(THW) - window_size + 1:
  115. next_window_data = THW[j:j + window_size]
  116. if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
  117. stable_end = j + window_size - 1
  118. stable_average_THW = (stable_average_THW * (j - stable_start) + sum(next_window_data)) / (
  119. j - stable_start + window_size)
  120. j += window_size
  121. else:
  122. stable_start = j + window_size - 1
  123. stable_end = i + window_size - 1
  124. stable_average_THW = np.mean(window_data)
  125. break
  126. # self.stable_start_time_THW = self.df_ica['simTime'].iloc[stable_start]
  127. self.stable_average_THW = stable_average_THW
  128. def data_analyze(self):
  129. if self.df_ica.empty:
  130. self.delay_time_THW = 0
  131. self.result['value'] = [round(self.delay_time_THW, 3)]
  132. print(f"Delay time: {self.delay_time_THW}")
  133. else:
  134. change_indices = self.df_ica[self.df_ica['set_headway_time'] != self.df_ica['set_headway_time'].shift()].index
  135. print(f"Change indices of set speed: {change_indices}")
  136. set_headway_time = self.df_ica.loc[change_indices[0], 'set_headway_time']
  137. self._find_stable_THW(window_size=4, percent_deviation=5, set_value=set_headway_time)
  138. if not change_indices.empty:
  139. first_change_index = change_indices[change_indices != 0].min()
  140. set_THW_at_change = self.df_ica.loc[first_change_index, 'set_headway_time']
  141. timestamp_at_change = self.df_ica.loc[first_change_index, 'simTime']
  142. print(f"Set THW at first change: {set_THW_at_change}, Timestamp: {timestamp_at_change}")
  143. if self.stable_average_THW:
  144. target_THW = (self.stable_average_THW + self.df_ica.loc[first_change_index, 'set_headway_time']) / 2
  145. closest_index = (self.df_ica['set_headway_time'] - target_THW).abs().idxmin()
  146. closest_current_THW = self.df_ica.loc[closest_index, 'set_headway_time']
  147. closest_timestamp = self.df_ica.loc[closest_index, 'simTime']
  148. print(f"Closest speed: {closest_current_THW} at time: {closest_timestamp}")
  149. self.delay_time_THW = closest_timestamp - timestamp_at_change
  150. else:
  151. self.delay_time_THW = Max_Time
  152. self.result['value'] = [round(self.delay_time_THW, 3)]
  153. print(f"Delay time: {self.delay_time_THW}")
  154. else:
  155. self.delay_time_THW = 0.0
  156. self.result['value'] = [0.0]
  157. print("No valid change point for further calculation.")
  158. def markline_statistic(self):
  159. pass
  160. def report_data_statistic(self):
  161. # time_list = self.ego_df['simTime'].values.tolist()
  162. # graph_list = [x for x in self.graph_list if not np.isnan(x)]
  163. self.result['tableData']['avg'] = self.result['value'][0] if not self.df_ica.empty else '-'
  164. self.result['tableData']['max'] = '-'
  165. self.result['tableData']['min'] = '-'
  166. # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
  167. self.result['reportData']['data'] = []
  168. # self.markline_statistic()
  169. # markline_slices = self.markline_df.to_dict('records')
  170. self.result['reportData']['markLine'] = []
  171. self.result['reportData']['range'] = [0, 1.2]
  172. def run(self):
  173. # logger.info(f"Custom metric run:[{self.result['name']}].")
  174. logger.info(f"[case:{self.case_name}] Custom metric:[delay_time_THW:{self.result['name']}] evaluate.")
  175. try:
  176. self.data_extract()
  177. except Exception as e:
  178. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  179. try:
  180. self.data_analyze()
  181. except Exception as e:
  182. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  183. try:
  184. self.report_data_statistic()
  185. except Exception as e:
  186. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  187. # if __name__ == "__main__":
  188. # pass