cicv_ica_longitudinal_control08_peak_time_THW_new.py 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen, yangzihao
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. """
  17. import math
  18. import pandas as pd
  19. import numpy as np
  20. from common import zip_time_pairs, continuous_group, get_status_active_data, _cal_THW, _cal_v_ego_projection
  21. from log import logger
  22. """import functions"""
  23. # custom metric codes
  24. Max_Time = 1000
  25. class CustomMetric(object):
  26. def __init__(self, all_data, case_name):
  27. self.data = all_data
  28. self.optimal_dict = self.data.config
  29. self.status_trigger_dict = self.data.status_trigger_dict
  30. self.case_name = case_name
  31. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  32. self.graph_list = []
  33. self.df = pd.DataFrame()
  34. self.ego_df = pd.DataFrame()
  35. self.df_ica = pd.DataFrame()
  36. self.peak_time_THW = None
  37. self.result = {
  38. "name": "跟车峰值时间",
  39. "value": [],
  40. # "weight": [],
  41. "tableData": {
  42. "avg": "", # 平均值,或指标值
  43. "max": "",
  44. "min": ""
  45. },
  46. "reportData": {
  47. "name": "跟车峰值时间(s)",
  48. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  49. "data": [],
  50. "markLine": [],
  51. "range": [],
  52. },
  53. "statusFlag": {}
  54. }
  55. self.run()
  56. print(f"跟车峰值时间: {self.result['value']}")
  57. def data_extract(self):
  58. self.df = self.data.object_df
  59. self.ego_df = self.data.ego_data
  60. active_time_ranges = self.status_trigger_dict['ICA']['ICA_follow_time']
  61. self.df_ica = get_status_active_data(active_time_ranges, self.ego_df)
  62. # self.df_ica = self.ego_df[self.ego_df['ICA_status'] == "LLC_Follow_Vehicle"].copy() # 数字3对应ICA的Active
  63. # self.df_ica = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  64. # self.df_ica = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  65. if self.df_ica.empty:
  66. self.result['statusFlag']['function_ICA'] = False
  67. else:
  68. self.result['statusFlag']['function_ICA'] = True
  69. def _get_first_change_index_THW(self):
  70. """
  71. 获取DataFrame中'set_headway_time'列首次发生变化的索引值。
  72. Args:
  73. 无参数。
  74. Returns:
  75. Union[int, None]: 如果存在变化,则返回首次发生变化的索引值(int类型),否则返回None。
  76. """
  77. change_indices = self.df_ica[self.df_ica['set_headway_time'] != self.df_ica['set_headway_time'].shift()].index
  78. if not change_indices.empty:
  79. first_change_index = change_indices.min()
  80. else:
  81. first_change_index = None
  82. return first_change_index
  83. def data_analyze(self):
  84. if self.df_ica.empty:
  85. self.peak_time_THW = 0.0
  86. self.result['value'] = [0.0]
  87. print(f"peak_time_THW: {self.peak_time_THW}")
  88. else:
  89. ego_x = self.df_ica[self.df_ica['playerId'] == 1]['posX'].reset_index(drop=True)
  90. ego_y = self.df_ica[self.df_ica['playerId'] == 1]['posY'].reset_index(drop=True)
  91. obj_x = self.df_ica[self.df_ica['playerId'] == 2]['posX'].reset_index(drop=True)
  92. obj_y = self.df_ica[self.df_ica['playerId'] == 2]['posY'].reset_index(drop=True)
  93. ego_speedx = self.df_ica[self.df_ica['playerId'] == 1]['speedX'].reset_index(drop=True)
  94. ego_speedy = self.df_ica[self.df_ica['playerId'] == 1]['speedY'].reset_index(drop=True)
  95. obj_speedx = self.df_ica[self.df_ica['playerId'] == 2]['speedX'].reset_index(drop=True)
  96. obj_speedy = self.df_ica[self.df_ica['playerId'] == 2]['speedY'].reset_index(drop=True)
  97. dx = obj_x - ego_x
  98. dy = obj_y - ego_y
  99. vx = obj_speedx - ego_speedx
  100. vy = obj_speedy - ego_speedy
  101. dist = np.sqrt(dx ** 2 + dy ** 2)
  102. ego_v_projection_in_dist = _cal_v_ego_projection(dx, dy, ego_speedx, ego_speedy)
  103. thw1 = _cal_THW(dist, ego_v_projection_in_dist)
  104. thw = thw1.tolist()
  105. THW = []
  106. for item in thw:
  107. THW.append(item)
  108. THW.append(item)
  109. self.df_ica['THW'] = THW
  110. first_change_index = self._get_first_change_index_THW()
  111. if not first_change_index:
  112. self.peak_time_THW = 0
  113. self.result['value'] = [round(self.peak_time_THW, 3)]
  114. print(f"peak_time_THW: {self.peak_time_THW}")
  115. else:
  116. start_time = self.df_ica.loc[first_change_index, 'simTime']
  117. peak_time = self.df_ica.loc[self.df_ica['THW'].idxmax(), 'simTime']
  118. self.peak_time_THW = peak_time - start_time
  119. self.result['value'] = [round(self.peak_time_THW, 3)]
  120. print(f"peak_time_THW: {self.peak_time_THW}")
  121. def markline_statistic(self):
  122. pass
  123. def report_data_statistic(self):
  124. # time_list = self.ego_df['simTime'].values.tolist()
  125. # graph_list = [x for x in self.graph_list if not np.isnan(x)]
  126. self.result['tableData']['avg'] = self.result['value'][0] if not self.df_ica.empty else '-'
  127. self.result['tableData']['max'] = '-'
  128. self.result['tableData']['min'] = '-'
  129. # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
  130. self.result['reportData']['data'] = []
  131. # self.markline_statistic()
  132. # markline_slices = self.markline_df.to_dict('records')
  133. self.result['reportData']['markLine'] = []
  134. self.result['reportData']['range'] = [0, 1.2]
  135. def run(self):
  136. # logger.info(f"Custom metric run:[{self.result['name']}].")
  137. logger.info(f"[case:{self.case_name}] Custom metric:[peak_time_THW:{self.result['name']}] evaluate.")
  138. try:
  139. self.data_extract()
  140. except Exception as e:
  141. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  142. try:
  143. self.data_analyze()
  144. except Exception as e:
  145. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  146. try:
  147. self.report_data_statistic()
  148. except Exception as e:
  149. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  150. # if __name__ == "__main__":
  151. # pass