123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: zhanghaiwen, yangzihao
- @Data: 2024/02/21
- @Last Modified: 2024/02/21
- @Summary: The template of custom indicator.
- """
- """
- 设计思路:
- """
- import math
- import pandas as pd
- import numpy as np
- from common import zip_time_pairs, continuous_group, get_status_active_data, _cal_THW, _cal_v_ego_projection
- from log import logger
- """import functions"""
- # custom metric codes
- Max_Time = 1000
- class CustomMetric(object):
- def __init__(self, all_data, case_name):
- self.data = all_data
- self.optimal_dict = self.data.config
- self.status_trigger_dict = self.data.status_trigger_dict
- self.case_name = case_name
- self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
- self.graph_list = []
- self.df = pd.DataFrame()
- self.ego_df = pd.DataFrame()
- self.df_ica = pd.DataFrame()
- self.peak_time_THW = None
- self.result = {
- "name": "跟车峰值时间",
- "value": [],
- # "weight": [],
- "tableData": {
- "avg": "", # 平均值,或指标值
- "max": "",
- "min": ""
- },
- "reportData": {
- "name": "跟车峰值时间(s)",
- # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
- "data": [],
- "markLine": [],
- "range": [],
- },
- "statusFlag": {}
- }
- self.run()
- print(f"跟车峰值时间: {self.result['value']}")
- def data_extract(self):
- self.df = self.data.object_df
- self.ego_df = self.data.ego_data
- active_time_ranges = self.status_trigger_dict['ICA']['ICA_follow_time']
- self.df_ica = get_status_active_data(active_time_ranges, self.ego_df)
- # self.df_ica = self.ego_df[self.ego_df['ICA_status'] == "LLC_Follow_Vehicle"].copy() # 数字3对应ICA的Active
- # self.df_ica = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
- # self.df_ica = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
- if self.df_ica.empty:
- self.result['statusFlag']['function_ICA'] = False
- else:
- self.result['statusFlag']['function_ICA'] = True
- def _get_first_change_index_THW(self):
- """
- 获取DataFrame中'set_headway_time'列首次发生变化的索引值。
- Args:
- 无参数。
- Returns:
- Union[int, None]: 如果存在变化,则返回首次发生变化的索引值(int类型),否则返回None。
- """
- change_indices = self.df_ica[self.df_ica['set_headway_time'] != self.df_ica['set_headway_time'].shift()].index
- if not change_indices.empty:
- first_change_index = change_indices.min()
- else:
- first_change_index = None
- return first_change_index
- def data_analyze(self):
- if self.df_ica.empty:
- self.peak_time_THW = 0.0
- self.result['value'] = [0.0]
- print(f"peak_time_THW: {self.peak_time_THW}")
- else:
- ego_x = self.df_ica[self.df_ica['playerId'] == 1]['posX'].reset_index(drop=True)
- ego_y = self.df_ica[self.df_ica['playerId'] == 1]['posY'].reset_index(drop=True)
- obj_x = self.df_ica[self.df_ica['playerId'] == 2]['posX'].reset_index(drop=True)
- obj_y = self.df_ica[self.df_ica['playerId'] == 2]['posY'].reset_index(drop=True)
- ego_speedx = self.df_ica[self.df_ica['playerId'] == 1]['speedX'].reset_index(drop=True)
- ego_speedy = self.df_ica[self.df_ica['playerId'] == 1]['speedY'].reset_index(drop=True)
- obj_speedx = self.df_ica[self.df_ica['playerId'] == 2]['speedX'].reset_index(drop=True)
- obj_speedy = self.df_ica[self.df_ica['playerId'] == 2]['speedY'].reset_index(drop=True)
- dx = obj_x - ego_x
- dy = obj_y - ego_y
- vx = obj_speedx - ego_speedx
- vy = obj_speedy - ego_speedy
- dist = np.sqrt(dx ** 2 + dy ** 2)
- ego_v_projection_in_dist = _cal_v_ego_projection(dx, dy, ego_speedx, ego_speedy)
- thw1 = _cal_THW(dist, ego_v_projection_in_dist)
- thw = thw1.tolist()
- THW = []
- for item in thw:
- THW.append(item)
- THW.append(item)
- self.df_ica['THW'] = THW
- first_change_index = self._get_first_change_index_THW()
- if not first_change_index:
- self.peak_time_THW = 0
- self.result['value'] = [round(self.peak_time_THW, 3)]
- print(f"peak_time_THW: {self.peak_time_THW}")
- else:
- start_time = self.df_ica.loc[first_change_index, 'simTime']
- peak_time = self.df_ica.loc[self.df_ica['THW'].idxmax(), 'simTime']
- self.peak_time_THW = peak_time - start_time
- self.result['value'] = [round(self.peak_time_THW, 3)]
- print(f"peak_time_THW: {self.peak_time_THW}")
- def markline_statistic(self):
- pass
- def report_data_statistic(self):
- # time_list = self.ego_df['simTime'].values.tolist()
- # graph_list = [x for x in self.graph_list if not np.isnan(x)]
- self.result['tableData']['avg'] = self.result['value'][0] if not self.df_ica.empty else '-'
- self.result['tableData']['max'] = '-'
- self.result['tableData']['min'] = '-'
- # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
- self.result['reportData']['data'] = []
- # self.markline_statistic()
- # markline_slices = self.markline_df.to_dict('records')
- self.result['reportData']['markLine'] = []
- self.result['reportData']['range'] = [0, 1.2]
- def run(self):
- # logger.info(f"Custom metric run:[{self.result['name']}].")
- logger.info(f"[case:{self.case_name}] Custom metric:[peak_time_THW:{self.result['name']}] evaluate.")
- try:
- self.data_extract()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
- try:
- self.data_analyze()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
- try:
- self.report_data_statistic()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
- # if __name__ == "__main__":
- # pass
|