cicv_ica_longitudinal_control10_steady_error_THW_new.py 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen, yangzihao
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. """
  17. import math
  18. import pandas as pd
  19. import numpy as np
  20. from common import zip_time_pairs, continuous_group, get_status_active_data, _cal_THW, _cal_v_ego_projection
  21. from log import logger
  22. """import functions"""
  23. # custom metric codes
  24. class CustomMetric(object):
  25. def __init__(self, all_data, case_name):
  26. self.data = all_data
  27. self.optimal_dict = self.data.config
  28. self.status_trigger_dict = self.data.status_trigger_dict
  29. self.case_name = case_name
  30. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  31. self.graph_list = []
  32. self.df = pd.DataFrame()
  33. self.ego_df = pd.DataFrame()
  34. self.df_ica = pd.DataFrame()
  35. self.stable_average_THW = None
  36. self.steady_error_THW = None
  37. self.result = {
  38. "name": "跟车速度稳态误差",
  39. "value": [],
  40. # "weight": [],
  41. "tableData": {
  42. "avg": "", # 平均值,或指标值
  43. "max": "",
  44. "min": ""
  45. },
  46. "reportData": {
  47. "name": "跟车速度稳态误差(%)",
  48. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  49. "data": [],
  50. "markLine": [],
  51. "range": [],
  52. },
  53. "statusFlag": {}
  54. }
  55. self.run()
  56. print(f"跟车速度稳态误差: {self.result['value']}")
  57. def data_extract(self):
  58. self.df = self.data.object_df
  59. self.ego_df = self.data.ego_data
  60. active_time_ranges = self.status_trigger_dict['ICA']['ICA_follow_time']
  61. self.df_ica = get_status_active_data(active_time_ranges, self.ego_df)
  62. # self.df_ica = self.ego_df[self.ego_df['ICA_status'] == "LLC_Follow_Vehicle"].copy() # 数字3对应ICA的Active
  63. # self.df_ica = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  64. # self.df_ica = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  65. if self.df_ica.empty:
  66. self.result['statusFlag']['function_ICA'] = False
  67. else:
  68. self.result['statusFlag']['function_ICA'] = True
  69. def _get_first_change_index_THW(self):
  70. """
  71. 获取DataFrame中'set_headway_time'列首次发生变化的索引值。
  72. Args:
  73. 无参数。
  74. Returns:
  75. Union[int, None]: 如果存在变化,则返回首次发生变化的索引值(int类型),否则返回None。
  76. """
  77. change_indices = self.df_ica[self.df_ica['set_headway_time'] != self.df_ica['set_headway_time'].shift()].index
  78. if not change_indices.empty:
  79. first_change_index = change_indices.min()
  80. else:
  81. first_change_index = None
  82. return first_change_index
  83. def _find_stable_THW(self, window_size, percent_deviation, set_value):
  84. """
  85. 在给定的数据窗口中查找稳定跟车时距离THW,并计算该段内THW的平均值。
  86. Args:
  87. window_size (int): 窗口大小,表示在数据中寻找稳定段时考虑的连续数据点数量。
  88. percent_deviation (float): THW值相对于设定值的允许偏差百分比。
  89. set_value (float): THW的设定值。
  90. Returns:
  91. None
  92. """
  93. ego_x = self.df_ica[self.df_ica['playerId'] == 1]['posX'].reset_index(drop=True)
  94. ego_y = self.df_ica[self.df_ica['playerId'] == 1]['posY'].reset_index(drop=True)
  95. obj_x = self.df_ica[self.df_ica['playerId'] == 2]['posX'].reset_index(drop=True)
  96. obj_y = self.df_ica[self.df_ica['playerId'] == 2]['posY'].reset_index(drop=True)
  97. ego_speedx = self.df_ica[self.df_ica['playerId'] == 1]['speedX'].reset_index(drop=True)
  98. ego_speedy = self.df_ica[self.df_ica['playerId'] == 1]['speedY'].reset_index(drop=True)
  99. obj_speedx = self.df_ica[self.df_ica['playerId'] == 2]['speedX'].reset_index(drop=True)
  100. obj_speedy = self.df_ica[self.df_ica['playerId'] == 2]['speedY'].reset_index(drop=True)
  101. dx = obj_x - ego_x
  102. dy = obj_y - ego_y
  103. vx = obj_speedx - ego_speedx
  104. vy = obj_speedy - ego_speedy
  105. dist = np.sqrt(dx ** 2 + dy ** 2)
  106. ego_v_projection_in_dist = _cal_v_ego_projection(dx, dy, ego_speedx, ego_speedy)
  107. thw1 = _cal_THW(dist, ego_v_projection_in_dist)
  108. thw = thw1.tolist()
  109. THW = []
  110. for item in thw:
  111. THW.append(item)
  112. THW.append(item)
  113. self.df_ica['THW'] = THW
  114. THW = self.df_ica['THW'].values
  115. deviation = set_value * (percent_deviation / 100)
  116. stable_start = None
  117. stable_average_THW = None
  118. for i in range(len(THW) - window_size + 1):
  119. window_data = THW[i:i + window_size]
  120. if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
  121. if stable_start is None:
  122. stable_start = i
  123. stable_end = i + window_size - 1
  124. stable_average_THW = np.mean(window_data)
  125. j = i + window_size
  126. while j < len(THW) - window_size + 1:
  127. next_window_data = THW[j:j + window_size]
  128. if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
  129. stable_end = j + window_size - 1
  130. stable_average_THW = (stable_average_THW * (j - stable_start) + sum(next_window_data)) / (
  131. j - stable_start + window_size)
  132. j += window_size
  133. else:
  134. stable_start = j + window_size - 1
  135. stable_end = i + window_size - 1
  136. stable_average_THW = np.mean(window_data)
  137. break
  138. # self.stable_start_time_THW = self.df_ica['simTime'].iloc[stable_start]
  139. self.stable_average_THW = stable_average_THW
  140. def data_analyze(self):
  141. if self.df_ica.empty:
  142. self.steady_error_THW = 0.0
  143. print(f"steady_error_THW: {self.steady_error_THW}")
  144. self.result['value'] = [0.0]
  145. else:
  146. first_change_index = self._get_first_change_index_THW()
  147. if not first_change_index:
  148. self.steady_error_THW = 0
  149. self.result['value'] = [abs(round(self.steady_error_THW, 3))]
  150. print(f"steady_error_THW: {self.steady_error_THW}")
  151. else:
  152. set_headway_time = self.df_ica.loc[first_change_index, 'set_headway_time']
  153. self._find_stable_THW(window_size=4, percent_deviation=5, set_value=set_headway_time)
  154. if self.stable_average_THW:
  155. self.steady_error_THW = (self.stable_average_THW - set_headway_time) * 100 / self.stable_average_THW
  156. else:
  157. self.steady_error_THW = 0
  158. raise ValueError("Stable average speed is None.")
  159. self.result['value'] = [abs(round(self.steady_error_THW, 3))]
  160. print(f"steady_error_THW: {self.steady_error_THW}")
  161. def markline_statistic(self):
  162. pass
  163. def report_data_statistic(self):
  164. # time_list = self.ego_df['simTime'].values.tolist()
  165. # graph_list = [x for x in self.graph_list if not np.isnan(x)]
  166. self.result['tableData']['avg'] = self.result['value'][0] if not self.df_ica.empty else '-'
  167. self.result['tableData']['max'] = '-'
  168. self.result['tableData']['min'] = '-'
  169. # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
  170. self.result['reportData']['data'] = []
  171. # self.markline_statistic()
  172. # markline_slices = self.markline_df.to_dict('records')
  173. self.result['reportData']['markLine'] = []
  174. self.result['reportData']['range'] = [0, 1.2]
  175. def run(self):
  176. # logger.info(f"Custom metric run:[{self.result['name']}].")
  177. logger.info(f"[case:{self.case_name}] Custom metric:[steady_error_THW:{self.result['name']}] evaluate.")
  178. try:
  179. self.data_extract()
  180. except Exception as e:
  181. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  182. try:
  183. self.data_analyze()
  184. except Exception as e:
  185. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  186. try:
  187. self.report_data_statistic()
  188. except Exception as e:
  189. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  190. # if __name__ == "__main__":
  191. # pass