123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: zhanghaiwen(zhanghaiwen@china-icv.cn), yangzihao(yangzihao@china-icv.cn)
- @Data: 2023/06/25
- @Last Modified: 2023/06/25
- @Summary: Comfort metrics
- """
- import sys
- import math
- import pandas as pd
- import numpy as np
- import scipy.signal
- from pathlib import Path
- root_path = Path(__file__).resolve().parent.parent
- sys.path.append(str(root_path))
- sys.path.append('/home/kevin/kevin/zhaoyuan/evaluate_zhaoyuan/')
- print(sys.path)
- from models.common.score import Score
- from common.common import get_interpolation, get_frame_with_time
- from config import config
- from models.common import data_process
- from models.common import log # 确保这个路径是正确的,或者调整它
- log_path = config.LOG_PATH
- logger = log.get_logger(log_path)
- def peak_valley_decorator(method):
- def wrapper(self, *args, **kwargs):
- peak_valley = self._peak_valley_determination(self.df)
- pv_list = self.df.loc[peak_valley, ['simTime', 'speedH']].values.tolist()
- if len(pv_list) != 0:
- flag = True
- p_last = pv_list[0]
- for i in range(1, len(pv_list)):
- p_curr = pv_list[i]
- if self._peak_valley_judgment(p_last, p_curr):
- # method(self, p_curr, p_last)
- method(self, p_curr, p_last, flag, *args, **kwargs)
- else:
- p_last = p_curr
- return method
- else:
- flag = False
- p_curr = [0, 0]
- p_last = [0, 0]
- method(self, p_curr, p_last, flag, *args, **kwargs)
- return method
- return wrapper
- class Comfort(object):
- """
- Class for achieving comfort metrics for autonomous driving.
- Attributes:
- dataframe: Vehicle driving data, stored in dataframe format.
- """
- def __init__(self, data_processed):
-
- self.eval_data = pd.DataFrame()
- self.data_processed = data_processed
-
- self.data = data_processed.obj_data[1]
- self.mileage = data_processed.report_info['mileage']
- self.ego_df = pd.DataFrame()
- self.discomfort_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
- self.df_drivectrl = data_processed.driver_ctrl_df
-
- self.calculated_value = {
- 'Weaving': 0,
- 'shake': 0,
- 'cadence': 0,
- 'slamBrake': 0,
- 'slamAccelerate': 0,
- }
- self.metric_list = config.COMFORT_METRIC_LIST
- self.time_list = data_processed.driver_ctrl_data['time_list']
- self.frame_list = data_processed.driver_ctrl_data['frame_list']
- self.count_dict = {}
- self.duration_dict = {}
- self.strength_dict = {}
- self.discomfort_count = 0
- self.zigzag_count = 0
- self.shake_count = 0
- self.cadence_count = 0
- self.slam_brake_count = 0
- self.slam_accel_count = 0
- self.zigzag_strength = 0
- self.shake_strength = 0
- self.cadence_strength = 0
- self.slam_brake_strength = 0
- self.slam_accel_strength = 0
- self.discomfort_duration = 0
- self.zigzag_duration = 0
- self.shake_duration = 0
- self.cadence_duration = 0
- self.slam_brake_duration = 0
- self.slam_accel_duration = 0
- self.zigzag_time_list = []
- self.zigzag_frame_list = []
- self.zigzag_stre_list = []
- self.cur_ego_path_list = []
- self.curvature_list = []
- self._get_data()
- self._comf_param_cal()
- def _get_data(self):
- """
- """
- self.ego_df = self.data[config.COMFORT_INFO].copy()
- self.df = self.ego_df.reset_index(drop=True) # 索引是csv原索引
- def _cal_cur_ego_path(self, row):
- try:
- divide = (row['speedX'] ** 2 + row['speedY'] ** 2) ** (3 / 2)
- if not divide:
- res = None
- else:
- res = (row['speedX'] * row['accelY'] - row['speedY'] * row['accelX']) / divide
- except:
- res = None
- return res
- def _comf_param_cal(self):
- """
- """
- # [log]
- self.ego_df['ip_acc'] = self.ego_df['v'].apply(get_interpolation, point1=[18, 4], point2=[72, 2])
- self.ego_df['ip_dec'] = self.ego_df['v'].apply(get_interpolation, point1=[18, -5], point2=[72, -3.5])
- self.ego_df['slam_brake'] = (self.ego_df['lon_acc'] - self.ego_df['ip_dec']).apply(
- lambda x: 1 if x < 0 else 0)
- self.ego_df['slam_accel'] = (self.ego_df['lon_acc'] - self.ego_df['ip_acc']).apply(
- lambda x: 1 if x > 0 else 0)
- self.ego_df['cadence'] = self.ego_df.apply(
- lambda row: self._cadence_process_new(row['lon_acc'], row['ip_acc'], row['ip_dec']), axis=1)
- # for shake detector
- self.ego_df['cur_ego_path'] = self.ego_df.apply(self._cal_cur_ego_path, axis=1)
- self.ego_df['curvHor'] = self.ego_df['curvHor'].astype('float')
- self.ego_df['cur_diff'] = (self.ego_df['cur_ego_path'] - self.ego_df['curvHor']).abs()
- self.ego_df['R'] = self.ego_df['curvHor'].apply(lambda x: 10000 if x == 0 else 1 / x)
- self.ego_df['R_ego'] = self.ego_df['cur_ego_path'].apply(lambda x: 10000 if x == 0 else 1 / x)
- self.ego_df['R_diff'] = (self.ego_df['R_ego'] - self.ego_df['R']).abs()
- self.cur_ego_path_list = self.ego_df['cur_ego_path'].values.tolist()
- self.curvature_list = self.ego_df['curvHor'].values.tolist()
- def _peak_valley_determination(self, df):
- """
- Determine the peak and valley of the vehicle based on its current angular velocity.
- Parameters:
- df: Dataframe containing the vehicle angular velocity.
- Returns:
- peak_valley: List of indices representing peaks and valleys.
- """
- peaks, _ = scipy.signal.find_peaks(df['speedH'], height=0.01, distance=1, prominence=0.01)
- valleys, _ = scipy.signal.find_peaks(-df['speedH'], height=0.01, distance=1, prominence=0.01)
- peak_valley = sorted(list(peaks) + list(valleys))
- return peak_valley
- def _peak_valley_judgment(self, p_last, p_curr, tw=10000, avg=0.02):
- """
- Determine if the given peaks and valleys satisfy certain conditions.
- Parameters:
- p_last: Previous peak or valley data point.
- p_curr: Current peak or valley data point.
- tw: Threshold time difference between peaks and valleys.
- avg: Angular velocity gap threshold.
- Returns:
- Boolean indicating whether the conditions are satisfied.
- """
- t_diff = p_curr[0] - p_last[0]
- v_diff = abs(p_curr[1] - p_last[1])
- s = p_curr[1] * p_last[1]
- zigzag_flag = t_diff < tw and v_diff > avg and s < 0
- if zigzag_flag and ([p_last[0], p_curr[0]] not in self.zigzag_time_list):
- self.zigzag_time_list.append([p_last[0], p_curr[0]])
- return zigzag_flag
- @peak_valley_decorator
- def zigzag_count_func(self, p_curr, p_last, flag=True):
- """
- Count the number of zigzag movements.
- Parameters:
- df: Input dataframe data.
- Returns:
- zigzag_count: Number of zigzag movements.
- """
- if flag:
- self.zigzag_count += 1
- else:
- self.zigzag_count += 0
- @peak_valley_decorator
- def cal_zigzag_strength_strength(self, p_curr, p_last, flag=True):
- """
- Calculate various strength statistics.
- Returns:
- Tuple containing maximum strength, minimum strength,
- average strength, and 99th percentile strength.
- """
- if flag:
- v_diff = abs(p_curr[1] - p_last[1])
- t_diff = p_curr[0] - p_last[0]
- self.zigzag_stre_list.append(v_diff / t_diff) # 平均角加速度
- else:
- self.zigzag_stre_list = []
- def _shake_detector(self, Cr_diff=0.05, T_diff=0.39):
- """
- ego车横向加速度ax;
- ego车轨迹横向曲率;
- ego车轨迹曲率变化率;
- ego车所在车lane曲率;
- ego车所在车lane曲率变化率;
- 转向灯(暂时存疑,可不用)Cr_diff = 0.1, T_diff = 0.04
- 求解曲率公式k(t) = (x'(t) * y''(t) - y'(t) * x''(t)) / ((x'(t))^2 + (y'(t))^2)^(3/2)
- """
- time_list = []
- frame_list = []
- shake_time_list = []
- df = self.ego_df.copy()
- df = df[df['cur_diff'] > Cr_diff]
- df['frame_ID_diff'] = df['simFrame'].diff() # 找出行车轨迹曲率与道路曲率之差大于阈值的数据段
- filtered_df = df[df.frame_ID_diff > T_diff] # 此处是用大间隔区分多次晃动情景 。
- row_numbers = filtered_df.index.tolist()
- cut_column = pd.cut(df.index, bins=row_numbers)
- grouped = df.groupby(cut_column)
- dfs = {}
- for name, group in grouped:
- dfs[name] = group.reset_index(drop=True)
- for name, df_group in dfs.items():
- # 直道,未主动换道
- df_group['curvHor'] = df_group['curvHor'].abs()
- df_group_straight = df_group[(df_group.lightMask == 0) & (df_group.curvHor < 0.001)]
- if not df_group_straight.empty:
- tmp_list = df_group_straight['simTime'].values
- # shake_time_list.append([tmp_list[0], tmp_list[-1]])
- time_list.extend(df_group_straight['simTime'].values)
- frame_list.extend(df_group_straight['simFrame'].values)
- self.shake_count = self.shake_count + 1
- # 打转向灯,道路为直道,此时晃动判断标准车辆曲率变化率为一个更大的阈值
- df_group_change_lane = df_group[(df_group['lightMask'] != 0) & (df_group['curvHor'] < 0.001)]
- df_group_change_lane_data = df_group_change_lane[df_group_change_lane.cur_diff > Cr_diff + 0.2]
- if not df_group_change_lane_data.empty:
- tmp_list = df_group_change_lane_data['simTime'].values
- # shake_time_list.append([tmp_list[0], tmp_list[-1]])
- time_list.extend(df_group_change_lane_data['simTime'].values)
- frame_list.extend(df_group_change_lane_data['simFrame'].values)
- self.shake_count = self.shake_count + 1
- # 转弯,打转向灯
- df_group_turn = df_group[(df_group['lightMask'] != 0) & (df_group['curvHor'].abs() > 0.001)]
- df_group_turn_data = df_group_turn[df_group_turn.cur_diff.abs() > Cr_diff + 0.1]
- if not df_group_turn_data.empty:
- tmp_list = df_group_turn_data['simTime'].values
- # shake_time_list.append([tmp_list[0], tmp_list[-1]])
- time_list.extend(df_group_turn_data['simTime'].values)
- frame_list.extend(df_group_turn_data['simFrame'].values)
- self.shake_count = self.shake_count + 1
- TIME_RANGE = 1
- t_list = time_list
- f_list = frame_list
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not sub_group_time or t_list[i] - t_list[i - 1] <= TIME_RANGE:
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- # 输出图表值
- shake_time = [[g[0], g[-1]] for g in group_time]
- shake_frame = [[g[0], g[-1]] for g in group_frame]
- self.shake_count = len(shake_time)
- if shake_time:
- time_df = pd.DataFrame(shake_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(shake_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'shake'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- return time_list
- def _cadence_process(self, lon_acc_roc, ip_dec_roc):
- if abs(lon_acc_roc) >= abs(ip_dec_roc) or abs(lon_acc_roc) < 1:
- return np.nan
- # elif abs(lon_acc_roc) == 0:
- elif abs(lon_acc_roc) == 0:
- return 0
- elif lon_acc_roc > 0 and lon_acc_roc < -ip_dec_roc:
- return 1
- elif lon_acc_roc < 0 and lon_acc_roc > ip_dec_roc:
- return -1
- def _cadence_process_new(self, lon_acc, ip_acc, ip_dec):
- if abs(lon_acc) < 1 or lon_acc > ip_acc or lon_acc < ip_dec:
- return np.nan
- # elif abs(lon_acc_roc) == 0:
- elif abs(lon_acc) == 0:
- return 0
- elif lon_acc > 0 and lon_acc < ip_acc:
- return 1
- elif lon_acc < 0 and lon_acc > ip_dec:
- return -1
- else:
- return 0
- def _cadence_detector(self):
- """
- # 加速度突变:先加后减,先减后加,先加然后停,先减然后停
- # 顿挫:2s内多次加速度变化率突变
- # 求出每一个特征点,然后提取,然后将每一个特征点后面的2s做一个窗口,统计频率,避免无效运算
- # 将特征点筛选出来
- # 将特征点时间作为聚类标准,大于1s的pass,小于等于1s的聚类到一个分组
- # 去掉小于3个特征点的分组
- """
- # data = self.ego_df[['simTime', 'simFrame', 'lon_acc_roc', 'cadence']].copy()
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'lon_acc_roc', 'cadence']].copy()
- time_list = data['simTime'].values.tolist()
- data = data[data['cadence'] != np.nan]
- data['cadence_diff'] = data['cadence'].diff()
- data.dropna(subset='cadence_diff', inplace=True)
- data = data[data['cadence_diff'] != 0]
- t_list = data['simTime'].values.tolist()
- f_list = data['simFrame'].values.tolist()
- TIME_RANGE = 1
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not sub_group_time or t_list[i] - t_list[i - 1] <= TIME_RANGE: # 特征点相邻一秒内的,算作同一组顿挫
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 1] # 有一次特征点则算作一次顿挫
- group_frame = [g for g in group_frame if len(g) >= 1]
- # 将顿挫组的起始时间为组重新统计时间
- # 输出图表值
- cadence_time = [[g[0], g[-1]] for g in group_time]
- cadence_frame = [[g[0], g[-1]] for g in group_frame]
- if cadence_time:
- time_df = pd.DataFrame(cadence_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(cadence_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'cadence'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- # 将顿挫组的起始时间为组重新统计时间
- cadence_time_list = [time for pair in cadence_time for time in time_list if pair[0] <= time <= pair[1]]
- # time_list = [element for sublist in group_time for element in sublist]
- # merged_list = [element for sublist in res_group for element in sublist]
- # res_df = data[data['simTime'].isin(merged_list)]
- stre_list = []
- freq_list = []
- for g in group_time:
- # calculate strength
- g_df = data[data['simTime'].isin(g)]
- strength = g_df['lon_acc'].abs().mean()
- stre_list.append(strength)
- # calculate frequency
- cnt = len(g)
- t_start = g_df['simTime'].iloc[0]
- t_end = g_df['simTime'].iloc[-1]
- t_delta = t_end - t_start
- frequency = cnt / t_delta
- freq_list.append(frequency)
- self.cadence_count = len(freq_list)
- cadence_stre = sum(stre_list) / len(stre_list) if stre_list else 0
- return cadence_time_list
- def _slam_brake_detector(self):
- # 统计急刹全为1的分段的个数,记录分段开头的frame_ID
- # data = self.ego_df[['simTime', 'simFrame', 'lon_acc_roc', 'ip_dec_roc', 'slam_brake']].copy()
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'lon_acc_roc', 'ip_dec', 'slam_brake']].copy()
- # data['slam_diff'] = data['slam_brake'].diff()
- # res_df = data[data['slam_diff'] == 1]
- res_df = data[data['slam_brake'] == 1]
- t_list = res_df['simTime'].values
- f_list = res_df['simFrame'].values.tolist()
- TIME_RANGE = 1
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not sub_group_time or f_list[i] - f_list[i - 1] <= TIME_RANGE: # 连续帧的算作同一组急刹
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 2] # 达到两帧算作一次急刹
- group_frame = [g for g in group_frame if len(g) >= 2]
- # 输出图表值
- slam_brake_time = [[g[0], g[-1]] for g in group_time]
- slam_brake_frame = [[g[0], g[-1]] for g in group_frame]
- if slam_brake_time:
- time_df = pd.DataFrame(slam_brake_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(slam_brake_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'slam_brake'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- time_list = [element for sublist in group_time for element in sublist]
- self.slam_brake_count = len(group_time) # / self.mileage # * 1000000
- return time_list
- def _slam_accel_detector(self):
- # 统计急刹全为1的分段的个数,记录分段开头的frame_ID
- # data = self.ego_df[['simTime', 'simFrame', 'lon_acc_roc', 'ip_acc_roc', 'slam_accel']].copy()
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'ip_acc', 'slam_accel']].copy()
- # data['slam_diff'] = data['slam_accel'].diff()
- # res_df = data.loc[data['slam_diff'] == 1]
- res_df = data.loc[data['slam_accel'] == 1]
- t_list = res_df['simTime'].values
- f_list = res_df['simFrame'].values.tolist()
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not group_time or f_list[i] - f_list[i - 1] <= 1: # 连续帧的算作同一组急加速
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 2]
- group_frame = [g for g in group_frame if len(g) >= 2]
- # 输出图表值
- slam_accel_time = [[g[0], g[-1]] for g in group_time]
- slam_accel_frame = [[g[0], g[-1]] for g in group_frame]
- if slam_accel_time:
- time_df = pd.DataFrame(slam_accel_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(slam_accel_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'slam_accel'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- time_list = [element for sublist in group_time for element in sublist]
- self.slam_accel_count = len(group_time) # / self.mileage # * 1000000
- return time_list
- def comf_statistic(self):
-
- df = self.ego_df[['simTime', 'cur_diff', 'lon_acc', 'lon_acc_roc', 'accelH']].copy()
- self.zigzag_count_func()
- self.cal_zigzag_strength_strength()
- if self.zigzag_time_list:
- zigzag_df = pd.DataFrame(self.zigzag_time_list, columns=['start_time', 'end_time'])
- zigzag_df = get_frame_with_time(zigzag_df, self.ego_df)
- zigzag_df['type'] = 'zigzag'
- self.discomfort_df = pd.concat([self.discomfort_df, zigzag_df], ignore_index=True)
- # discomfort_df = pd.concat([time_df, frame_df], axis=1)
- # self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- zigzag_t_list = []
- # 只有[t_start, t_end]数对,要提取为完整time list
- t_list = df['simTime'].values.tolist()
- for t_start, t_end in self.zigzag_time_list:
- index_1 = t_list.index(t_start)
- index_2 = t_list.index(t_end)
- zigzag_t_list.extend(t_list[index_1:index_2 + 1])
- zigzag_t_list = list(set(zigzag_t_list))
- shake_t_list = self._shake_detector()
- cadence_t_list = self._cadence_detector()
- slam_brake_t_list = self._slam_brake_detector()
- slam_accel_t_list = self._slam_accel_detector()
-
- discomfort_time_list = zigzag_t_list + shake_t_list + cadence_t_list + slam_brake_t_list + slam_accel_t_list
- discomfort_time_list = sorted(discomfort_time_list) # 排序
- discomfort_time_list = list(set(discomfort_time_list)) # 去重
- # TIME_DIFF = self.time_list[3] - self.time_list[2]
- # TIME_DIFF = 0.4
- FREQUENCY = 100
- TIME_DIFF = 1 / FREQUENCY
- self.discomfort_duration = len(discomfort_time_list) * TIME_DIFF
- df['flag_zigzag'] = df['simTime'].apply(lambda x: 1 if x in zigzag_t_list else 0)
- df['flag_shake'] = df['simTime'].apply(lambda x: 1 if x in shake_t_list else 0)
- df['flag_cadence'] = df['simTime'].apply(lambda x: 1 if x in cadence_t_list else 0)
- df['flag_slam_brake'] = df['simTime'].apply(lambda x: 1 if x in slam_brake_t_list else 0)
- df['flag_slam_accel'] = df['simTime'].apply(lambda x: 1 if x in slam_accel_t_list else 0)
- self.calculated_value = {
- "weaving": self.zigzag_count,
- "shake": self.shake_count,
- "cadence": self.cadence_count,
- "slamBrake": self.slam_brake_count,
- "slamAccelerate": self.slam_accel_count
- }
-
- return self.calculated_value
- def _nan_detect(self, num):
- if math.isnan(num):
- return 0
- return num
- def zip_time_pairs(self, zip_list):
- zip_time_pairs = zip(self.time_list, zip_list)
- zip_vs_time = [[x, "" if math.isnan(y) else y] for x, y in zip_time_pairs]
- return zip_vs_time
- def report_statistic(self):
- comfort_result = self.comf_statistic()
- evaluator = Score(config.COMFORT_CONFIG_PATH)
- result = evaluator.evaluate(comfort_result)
- print(f'Comfort Result:{self.calculated_value}')
-
- return result
-
- if __name__ == '__main__':
- case_name = 'ICA'
- mode_label = 'PGVIL'
-
- data = data_process.DataPreprocessing(case_name, mode_label)
- comfort_instance = Comfort(data)
- # 调用实例方法 report_statistic,它不接受除 self 之外的参数
- try:
- comfort_result = comfort_instance.report_statistic()
- result = {'comfort': comfort_result}
-
- print(result)
- except Exception as e:
- print(f"An error occurred in Comfort.report_statistic: {e}")
|