12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- import os
- import sys
- import json
- from pathlib import Path
- def dict2json(data_dict, file_path):
- """
- 将字典转换为JSON格式并保存到文件中。
-
- 参数:
- data_dict (dict): 要转换的字典。
- file_path (str): 保存JSON文件的路径。
- """
- try:
- with open(file_path, 'w', encoding='utf-8') as json_file:
- json.dump(data_dict, json_file, ensure_ascii=False, indent=4)
- print(f"JSON文件已保存到 {file_path}")
- except Exception as e:
- print(f"保存JSON文件时出错: {e}")
- def get_interpolation(x, point1, point2):
- """
- According to the two extreme value points, the equation of one variable is determined,
- and the solution of the equation is obtained in the domain of definition.
- Arguments:
- x: A float number of the independent variable.
- point1: A set of the coordinate extreme point.
- point2: A set of the other coordinate extreme point.
- Returns:
- y: A float number of the dependent variable.
- """
- try:
- k = (point1[1] - point2[1]) / (point1[0] - point2[0])
- b = (point1[0] * point2[1] - point1[1] * point2[0]) / (point1[0] - point2[0])
- y = x * k + b
- return y
- except Exception as e:
- return f"Error: {str(e)}"
-
- def get_frame_with_time(df1, df2):
- # 将dataframe1按照start_time与simTime进行合并
- df1_start = df1.merge(df2[['simTime', 'simFrame']], left_on='start_time', right_on='simTime')
- df1_start = df1_start[['start_time', 'simFrame']].copy()
- df1_start.rename(columns={'simFrame': 'start_frame'}, inplace=True)
- # 将dataframe1按照end_time与simTime进行合并
- df1_end = df1.merge(df2[['simTime', 'simFrame']], left_on='end_time', right_on='simTime')
- df1_end = df1_end[['end_time', 'simFrame']].copy()
- df1_end.rename(columns={'simFrame': 'end_frame'}, inplace=True)
- # 将两个合并后的数据框按照行索引进行拼接
- result = pd.concat([df1_start, df1_end], axis=1)
- return result
-
- if __name__ == "__main__":
- pass
|