score_weight.py 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen(zhanghaiwen@china-icv.cn), yangzihao(yangzihao@china-icv.cn)
  10. @Data: 2024/01/12
  11. @Last Modified: 2024/01/12
  12. @Summary: Weight cal
  13. """
  14. import sys
  15. sys.path.append('../common')
  16. sys.path.append('modules')
  17. sys.path.append('score')
  18. import numpy as np
  19. from common import get_interpolation
  20. from functools import reduce
  21. def cal_weight_from_80(score_list):
  22. # weight process
  23. s_list = [80.1 if x == 80 else x for x in score_list]
  24. weight_list = abs((np.array(s_list) - 80) / 100)
  25. # normalization
  26. weight_list = weight_list / sum(weight_list)
  27. return weight_list
  28. def cal_score_with_priority(score_list, weight_list, priority_list):
  29. """
  30. """
  31. rho = 1
  32. flag = any(i < 80 for i in score_list)
  33. if flag:
  34. rho = 0.9
  35. for i in range(len(score_list)):
  36. if score_list[i] < 80 and priority_list[i] == 0:
  37. rho = 0.8
  38. # calculate score
  39. score_all = np.dot(weight_list, score_list) * rho
  40. return score_all
  41. def cal_score_from_80(score_list):
  42. """
  43. """
  44. # weight process
  45. weight_list = cal_weight_from_80(score_list)
  46. # calculate score
  47. score_all = np.dot(weight_list, score_list)
  48. # score_all = score_all * 0.8 if flag else score_all
  49. return round(score_all, 2)
  50. class ScoreModel(object):
  51. """
  52. 信息量越大,权重越大
  53. 对比强度和冲突性越大,信息量越大
  54. 标准差越大,对比强度越大
  55. 相关性越小,冲突性越大
  56. ————————————————————————
  57. 单列标准差大,列之间相关性小 -> 则权重大
  58. """
  59. def __init__(self, kind_list, optimal_value, multiple_list, arr):
  60. # n for cases
  61. # m for indicators
  62. self.n, self.m = arr.shape
  63. self.kind = kind_list
  64. self.optimal = optimal_value
  65. self.X = arr
  66. self.rho = 1 / 3 # 一般选0.5,最低分计算公式: rho/(1+rho)
  67. self.multiple = np.array(multiple_list)
  68. def calculate_score(self):
  69. # m个指标,n个场景
  70. val_mean = []
  71. optimal_value = self.optimal
  72. for i in range(self.m):
  73. opt_val = optimal_value[i]
  74. val_mean_i = (sum(self.X[:, i]) + opt_val) / (self.n + 1) # Eq(15)
  75. val_mean.append(val_mean_i)
  76. self.X = self.X / np.array(val_mean) # 无量纲化
  77. optimal_value = np.array(optimal_value) / np.array(val_mean) # 最优值无量纲化
  78. abs_X = abs(optimal_value - self.X)
  79. minn = 0
  80. maxx = 2 * (self.multiple[0][1] - 1) / (self.multiple[0][1] + 1) # 五倍时参数为1.333333,三倍时参数为1
  81. eta = (minn + self.rho * maxx) / (abs_X + self.rho * maxx) # Eq(16)
  82. Eta = [x * 80 for x in list(np.mean(eta, axis=0))]
  83. return Eta
  84. def cal_score(self):
  85. """
  86. 数据处理前进行特判,先将无需打分的数据直接给分
  87. 例如,大于基准值五倍的值,直接给出100分、0分
  88. 单列均为同一个值时,符合预期值则100分,否则0分
  89. 先完成单用例特判,再考虑多用例特判
  90. """
  91. # 单用例版本
  92. # for j in range(self.n):
  93. # multiple = 5
  94. inteval_20_coefficient = 3
  95. flag_list = [-1] * self.m
  96. column_list = []
  97. for i in range(self.m):
  98. optimal = self.optimal[i]
  99. multiple = self.multiple[i]
  100. if self.kind[i] == 1: # 极大型
  101. if np.all(self.X[:, i] >= optimal * multiple[1]): # 补充线性插值
  102. flag_list[i] = 100
  103. elif np.all(self.X[:, i] >= optimal):
  104. flag_list[i] = float(get_interpolation(self.X[:, i], [optimal, 80], [optimal * multiple[1], 100]))
  105. elif self.X[:, i] <= optimal * multiple[0]:
  106. flag_list[i] = 0
  107. else:
  108. column_list.append(i)
  109. elif self.kind[i] == -1: # 极小型
  110. if np.all(self.X[:, i] <= optimal * multiple[0]):
  111. flag_list[i] = 100
  112. elif np.all(self.X[:, i] <= optimal):
  113. flag_list[i] = float(get_interpolation(self.X[:, i], [optimal, 80], [optimal * multiple[0], 100]))
  114. elif self.X[:, i] >= optimal * multiple[1]:
  115. flag_list[i] = 0
  116. else:
  117. column_list.append(i)
  118. elif self.kind[i] == 0: # 区间型
  119. if np.all(optimal * multiple[0] <= self.X[:, i] <= optimal):
  120. flag_list[i] = float(
  121. get_interpolation(optimal - self.X[:, i], [abs(optimal - optimal * multiple[0]), 80], [0, 100]))
  122. elif np.all(optimal <= self.X[:, i] <= optimal * multiple[1]):
  123. flag_list[i] = float(
  124. get_interpolation(self.X[:, i] - optimal, [abs(optimal * multiple[1] - optimal), 80], [0, 100]))
  125. elif np.all(self.X[:, i] < optimal * multiple[0]):
  126. dist = optimal * multiple[0] - self.X[:, i]
  127. interval_dist = (optimal - optimal * multiple[0]) / inteval_20_coefficient
  128. if dist < interval_dist:
  129. flag_list[i] = float(get_interpolation(dist, [interval_dist, 20], [0, 80]))
  130. else:
  131. flag_list[i] = 0
  132. elif np.all(optimal * multiple[1] < self.X[:, i]):
  133. dist = self.X[:, i] - optimal * multiple[1]
  134. interval_dist = (optimal * multiple[1] - optimal) / inteval_20_coefficient
  135. if dist < interval_dist:
  136. flag_list[i] = float(get_interpolation(dist, [interval_dist, 20], [0, 80]))
  137. else:
  138. flag_list[i] = 0
  139. else:
  140. column_list.append(i)
  141. arr_temp = self.X[:, column_list]
  142. kind_temp = [self.kind[i] for i in range(len(flag_list)) if flag_list[i] == -1]
  143. optimal_temp = [self.optimal[i] for i in range(len(flag_list)) if flag_list[i] == -1]
  144. multiple_temp = [self.multiple[i] for i in range(len(flag_list)) if flag_list[i] == -1]
  145. # n_temp = len(arr_temp)
  146. m_temp = len(arr_temp[0])
  147. critic_m = ScoreModel(kind_temp, optimal_temp, multiple_temp, arr_temp)
  148. if -1 not in flag_list: # 全为特殊值
  149. score = sum(flag_list) / len(flag_list)
  150. elif all(x == -1 for x in flag_list): # 无特殊值
  151. score_temp = critic_m.calculate_score()
  152. # score = sum(score_temp) / len(score_temp)
  153. flag_list = score_temp
  154. else: # 部分为特殊值
  155. score_temp = critic_m.calculate_score()
  156. # score_temp_mean = sum(score_temp) / len(score_temp)
  157. # w_temp = m_temp / self.m
  158. # score = 100 * (1 - w_temp) + score_temp_mean * w_temp
  159. index = 0
  160. for i, flag in enumerate(flag_list):
  161. if flag == -1:
  162. flag_list[i] = score_temp[index]
  163. index += 1
  164. score_temp = flag_list
  165. return score_temp
  166. class AHP:
  167. def __init__(self, matrix):
  168. self.A = np.array(matrix)
  169. self.n = len(matrix)
  170. def _get_consistency_ratio(self, w_max):
  171. RI = [0, 0, 0.0001, 0.52, 0.89, 1.12, 1.26, 1.36,
  172. 1.41, 1.46, 1.49, 1.52, 1.54, 1.56, 1.58, 1.59,
  173. 1.5943, 1.6064, 1.6133, 1.6207, 1.6292]
  174. CI = (w_max - self.n) / (self.n - 1)
  175. CR = CI / RI[self.n]
  176. return CR
  177. def get_weights(self, method='eigenvalue'):
  178. # Check consistency of pairwise comparison matrix
  179. w, v = np.linalg.eig(self.A)
  180. w_index = np.argmax(w)
  181. w_max = np.real(w[w_index])
  182. cr = self._get_consistency_ratio(w_max)
  183. if cr > 0.1:
  184. raise ValueError('The pairwise comparison matrix is inconsistent.')
  185. # Normalize matrix
  186. line_sum = [sum(m) for m in zip(*self.A)]
  187. D = np.zeros((self.n, self.n))
  188. for i in range(self.n):
  189. for j in range(self.n):
  190. D[i][j] = self.A[i][j] / line_sum[j]
  191. # Calculate weights with selected method
  192. if method == 'arithmetic':
  193. weights = np.zeros(self.n)
  194. for i in range(self.n):
  195. weights[i] = np.average(D[i])
  196. elif method == 'geometric':
  197. weights = np.zeros(self.n)
  198. for i in range(self.n):
  199. weights[i] = reduce(lambda x, y: x * y, self.A[i])
  200. weights[i] = pow(weights[i], 1 / self.n)
  201. weights = [e / np.sum(weights) for e in weights]
  202. elif method == 'eigenvalue':
  203. weights = np.zeros(self.n)
  204. v_index = np.argmax(v)
  205. v_max = np.real(v[:, v_index])
  206. weights = [e / np.sum(v_max) for e in v_max]
  207. return weights
  208. if __name__ == "__main__":
  209. kind_list = [-1]
  210. optimal_value = [6]
  211. multiple_list = [[0.5, 2]] # [3, 12]
  212. arr = [[1.999]]
  213. # arr = [[2.1]]
  214. # arr = [[2.999]]
  215. # arr = [[3]]
  216. # arr = [[4]]
  217. # arr = [[6]]
  218. # arr = [[11]]
  219. # arr = [[11.999]]
  220. # arr = [[12]]
  221. # arr = [[12.1]]
  222. cc = ScoreModel(kind_list, optimal_value, multiple_list, np.array(arr))
  223. res = cc.cal_score()
  224. print(res)