score.py 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen(zhanghaiwen@china-icv.cn), yangzihao(yangzihao@china-icv.cn)
  10. @Data: 2024/01/12
  11. @Last Modified: 2024/01/12
  12. @Summary: Weight cal
  13. """
  14. import sys
  15. sys.path.append('../common')
  16. sys.path.append('../modules')
  17. sys.path.append('../score')
  18. import numpy as np
  19. from common import get_interpolation
  20. # from score.weight import cal_weight_from_80
  21. from weight import cal_weight_from_80
  22. def cal_score_with_priority(score_list, weight_list, priority_list):
  23. """
  24. """
  25. rho = 1
  26. flag = any(i < 80 for i in score_list)
  27. if flag:
  28. rho = 0.9
  29. for i in range(len(score_list)):
  30. if score_list[i] < 80 and priority_list[i] == 0:
  31. rho = 0.8
  32. # calculate score
  33. score_all = np.dot(weight_list, score_list) * rho
  34. return score_all
  35. def cal_score_from_80(score_list):
  36. """
  37. """
  38. # weight process
  39. weight_list = cal_weight_from_80(score_list)
  40. # calculate score
  41. score_all = np.dot(weight_list, score_list)
  42. # score_all = score_all * 0.8 if flag else score_all
  43. return round(score_all, 2)
  44. class ScoreModel(object):
  45. """
  46. 信息量越大,权重越大
  47. 对比强度和冲突性越大,信息量越大
  48. 标准差越大,对比强度越大
  49. 相关性越小,冲突性越大
  50. ————————————————————————
  51. 单列标准差大,列之间相关性小 -> 则权重大
  52. """
  53. def __init__(self, kind_list, optimal_value, multiple_list, arr):
  54. # n for cases
  55. # m for indicators
  56. self.n, self.m = arr.shape
  57. self.kind = kind_list
  58. self.optimal = optimal_value
  59. self.X = arr
  60. self.rho = 1 / 3 # 一般选0.5,最低分计算公式: rho/(1+rho)
  61. self.multiple = np.array(multiple_list)
  62. def calculate_score(self):
  63. # m个指标,n个场景
  64. val_mean = []
  65. optimal_value = self.optimal
  66. for i in range(self.m):
  67. opt_val = optimal_value[i]
  68. val_mean_i = (sum(self.X[:, i]) + opt_val) / (self.n + 1) # Eq(15)
  69. val_mean.append(val_mean_i)
  70. self.X = self.X / np.array(val_mean) # 无量纲化
  71. optimal_value = np.array(optimal_value) / np.array(val_mean) # 最优值无量纲化
  72. abs_X = abs(optimal_value - self.X)
  73. minn = 0
  74. maxx = 2 * (self.multiple[0][1] - 1) / (self.multiple[0][1] + 1) # 五倍时参数为1.333333,三倍时参数为1
  75. eta = (minn + self.rho * maxx) / (abs_X + self.rho * maxx) # Eq(16)
  76. Eta = [x * 80 for x in list(np.mean(eta, axis=0))]
  77. return Eta
  78. def cal_score(self):
  79. """
  80. 数据处理前进行特判,先将无需打分的数据直接给分
  81. 例如,大于基准值五倍的值,直接给出100分、0分
  82. 单列均为同一个值时,符合预期值则100分,否则0分
  83. 先完成单用例特判,再考虑多用例特判
  84. """
  85. # 单用例版本
  86. # for j in range(self.n):
  87. # multiple = 5
  88. inteval_20_coefficient = 3
  89. flag_list = [-1] * self.m
  90. column_list = []
  91. for i in range(self.m):
  92. optimal = self.optimal[i]
  93. multiple = self.multiple[i]
  94. if self.kind[i] == 1: # 极大型
  95. if np.all(self.X[:, i] >= optimal * multiple[1]): # 补充线性插值
  96. flag_list[i] = 100
  97. elif np.all(self.X[:, i] >= optimal):
  98. flag_list[i] = float(get_interpolation(self.X[:, i], [optimal, 80], [optimal * multiple[1], 100]))
  99. elif self.X[:, i] <= optimal * multiple[0]:
  100. flag_list[i] = 0
  101. else:
  102. column_list.append(i)
  103. elif self.kind[i] == -1: # 极小型
  104. if np.all(self.X[:, i] <= optimal * multiple[0]):
  105. flag_list[i] = 100
  106. elif np.all(self.X[:, i] <= optimal):
  107. flag_list[i] = float(get_interpolation(self.X[:, i], [optimal, 80], [optimal * multiple[0], 100]))
  108. elif self.X[:, i] >= optimal * multiple[1]:
  109. flag_list[i] = 0
  110. else:
  111. column_list.append(i)
  112. elif self.kind[i] == 0: # 区间型
  113. if np.all(optimal * multiple[0] <= self.X[:, i] <= optimal):
  114. flag_list[i] = float(
  115. get_interpolation(optimal - self.X[:, i], [abs(optimal - optimal * multiple[0]), 80], [0, 100]))
  116. elif np.all(optimal <= self.X[:, i] <= optimal * multiple[1]):
  117. flag_list[i] = float(
  118. get_interpolation(self.X[:, i] - optimal, [abs(optimal * multiple[1] - optimal), 80], [0, 100]))
  119. elif np.all(self.X[:, i] < optimal * multiple[0]):
  120. dist = optimal * multiple[0] - self.X[:, i]
  121. interval_dist = (optimal - optimal * multiple[0]) / inteval_20_coefficient
  122. if dist < interval_dist:
  123. flag_list[i] = float(get_interpolation(dist, [interval_dist, 20], [0, 80]))
  124. else:
  125. flag_list[i] = 0
  126. elif np.all(optimal * multiple[1] < self.X[:, i]):
  127. dist = self.X[:, i] - optimal * multiple[1]
  128. interval_dist = (optimal * multiple[1] - optimal) / inteval_20_coefficient
  129. if dist < interval_dist:
  130. flag_list[i] = float(get_interpolation(dist, [interval_dist, 20], [0, 80]))
  131. else:
  132. flag_list[i] = 0
  133. else:
  134. column_list.append(i)
  135. arr_temp = self.X[:, column_list]
  136. kind_temp = [self.kind[i] for i in range(len(flag_list)) if flag_list[i] == -1]
  137. optimal_temp = [self.optimal[i] for i in range(len(flag_list)) if flag_list[i] == -1]
  138. multiple_temp = [self.multiple[i] for i in range(len(flag_list)) if flag_list[i] == -1]
  139. # n_temp = len(arr_temp)
  140. m_temp = len(arr_temp[0])
  141. critic_m = ScoreModel(kind_temp, optimal_temp, multiple_temp, arr_temp)
  142. if -1 not in flag_list: # 全为特殊值
  143. score = sum(flag_list) / len(flag_list)
  144. elif all(x == -1 for x in flag_list): # 无特殊值
  145. score_temp = critic_m.calculate_score()
  146. # score = sum(score_temp) / len(score_temp)
  147. flag_list = score_temp
  148. else: # 部分为特殊值
  149. score_temp = critic_m.calculate_score()
  150. # score_temp_mean = sum(score_temp) / len(score_temp)
  151. # w_temp = m_temp / self.m
  152. # score = 100 * (1 - w_temp) + score_temp_mean * w_temp
  153. index = 0
  154. for i, flag in enumerate(flag_list):
  155. if flag == -1:
  156. flag_list[i] = score_temp[index]
  157. index += 1
  158. score_temp = flag_list
  159. return score_temp
  160. if __name__ == "__main__":
  161. kind_list = [-1]
  162. optimal_value = [6]
  163. multiple_list = [[0.5, 2]] # [3, 12]
  164. arr = [[1.999]]
  165. # arr = [[2.1]]
  166. # arr = [[2.999]]
  167. # arr = [[3]]
  168. # arr = [[4]]
  169. # arr = [[6]]
  170. # arr = [[11]]
  171. # arr = [[11.999]]
  172. # arr = [[12]]
  173. # arr = [[12.1]]
  174. cc = ScoreModel(kind_list, optimal_value, multiple_list, np.array(arr))
  175. res = cc.cal_score()
  176. print(res)