|
@@ -0,0 +1,226 @@
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+"""
|
|
|
|
+@Authors: zhanghaiwen, yangzihao
|
|
|
|
+@Data: 2024/02/21
|
|
|
|
+@Last Modified: 2024/02/21
|
|
|
|
+@Summary: The template of custom indicator.
|
|
|
|
+"""
|
|
|
|
+
|
|
|
|
+"""
|
|
|
|
+设计思路:
|
|
|
|
+
|
|
|
|
+"""
|
|
|
|
+
|
|
|
|
+import math
|
|
|
|
+import pandas as pd
|
|
|
|
+import numpy as np
|
|
|
|
+from common import zip_time_pairs, continuous_group, get_status_active_data
|
|
|
|
+from log import logger
|
|
|
|
+
|
|
|
|
+"""import functions"""
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class CustomMetric(object):
|
|
|
|
+ def __init__(self, all_data, case_name):
|
|
|
|
+ self.data = all_data
|
|
|
|
+ self.optimal_dict = self.data.config
|
|
|
|
+ self.status_trigger_dict = self.data.status_trigger_dict
|
|
|
|
+ self.case_name = case_name
|
|
|
|
+ self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
|
|
|
|
+ self.graph_list = []
|
|
|
|
+
|
|
|
|
+ self.df = pd.DataFrame()
|
|
|
|
+ self.ego_df = pd.DataFrame()
|
|
|
|
+ self.df_acc = pd.DataFrame()
|
|
|
|
+
|
|
|
|
+ self.stable_average_speed = None
|
|
|
|
+ self.rise_time_cruise = None
|
|
|
|
+
|
|
|
|
+ self.result = {
|
|
|
|
+ "name": "定速巡航上升时间",
|
|
|
|
+ "value": [],
|
|
|
|
+
|
|
|
|
+ "tableData": {
|
|
|
|
+ "avg": "",
|
|
|
|
+ "max": "",
|
|
|
|
+ "min": ""
|
|
|
|
+ },
|
|
|
|
+ "reportData": {
|
|
|
|
+ "name": "定速巡航上升时间(s)",
|
|
|
|
+
|
|
|
|
+ "data": [],
|
|
|
|
+ "markLine": [],
|
|
|
|
+ "range": [],
|
|
|
|
+ },
|
|
|
|
+ "statusFlag": {}
|
|
|
|
+ }
|
|
|
|
+ self.run()
|
|
|
|
+ print(f"定速巡航上升时间: {self.result['value']}")
|
|
|
|
+
|
|
|
|
+ def data_extract(self):
|
|
|
|
+ self.df = self.data.object_df
|
|
|
|
+ self.ego_df = self.data.ego_data
|
|
|
|
+
|
|
|
|
+ active_time_ranges = self.status_trigger_dict['ACC']['ACC_active_time']
|
|
|
|
+ self.df_acc = get_status_active_data(active_time_ranges, self.df)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ if self.df_acc.empty:
|
|
|
|
+ self.result['statusFlag']['functionACC'] = False
|
|
|
|
+ else:
|
|
|
|
+ self.result['statusFlag']['functionACC'] = True
|
|
|
|
+
|
|
|
|
+ def _get_first_change_index_cruise(self):
|
|
|
|
+ """
|
|
|
|
+ 获取数据集中第一次巡航速度发生变化的索引。
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ 无参数。
|
|
|
|
+
|
|
|
|
+ Returns:
|
|
|
|
+ Union[int, None]: 如果存在巡航速度发生变化的索引,则返回第一个发生变化的索引(int类型);
|
|
|
|
+ 如果不存在,则返回None。
|
|
|
|
+
|
|
|
|
+ """
|
|
|
|
+ change_indices = self.df_acc[self.df_acc['set_cruise_speed'] != self.df_acc['set_cruise_speed'].shift()].index
|
|
|
|
+ if not change_indices.empty:
|
|
|
|
+ first_change_index = change_indices.min()
|
|
|
|
+ else:
|
|
|
|
+ first_change_index = None
|
|
|
|
+ return first_change_index
|
|
|
|
+
|
|
|
|
+ def _find_stable_speed_cruise(self, window_size, percent_deviation, set_value):
|
|
|
|
+ """
|
|
|
|
+ 在给定的速度数据中查找稳定的巡航速度段,并计算该段的平均速度。
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ window_size (int): 滑动窗口的大小,表示用于计算平均速度的速度数据点数量。
|
|
|
|
+ percent_deviation (float): 设定值的允许偏差百分比。
|
|
|
|
+ set_value (float): 期望的稳定速度设定值。
|
|
|
|
+
|
|
|
|
+ Returns:
|
|
|
|
+ None
|
|
|
|
+
|
|
|
|
+ """
|
|
|
|
+
|
|
|
|
+ speed_data = self.df_acc['speedX'].values
|
|
|
|
+ deviation = set_value * (percent_deviation / 100)
|
|
|
|
+ stable_start = None
|
|
|
|
+ stable_average_speed = None
|
|
|
|
+
|
|
|
|
+ for i in range(len(speed_data) - window_size + 1):
|
|
|
|
+ window_data = speed_data[i:i + window_size]
|
|
|
|
+
|
|
|
|
+ if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
|
|
|
|
+ if stable_start is None:
|
|
|
|
+ stable_start = i
|
|
|
|
+ stable_end = i + window_size - 1
|
|
|
|
+ stable_average_speed = np.mean(window_data)
|
|
|
|
+
|
|
|
|
+ j = i + window_size
|
|
|
|
+ while j < len(speed_data) - window_size + 1:
|
|
|
|
+ next_window_data = speed_data[j:j + window_size]
|
|
|
|
+
|
|
|
|
+ if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
|
|
|
|
+ stable_end = j + window_size - 1
|
|
|
|
+ stable_average_speed = (stable_average_speed * (j - stable_start) + sum(next_window_data)) / (
|
|
|
|
+ j - stable_start + window_size)
|
|
|
|
+ j += window_size
|
|
|
|
+ else:
|
|
|
|
+ stable_start = j + window_size - 1
|
|
|
|
+ stable_end = i + window_size - 1
|
|
|
|
+ stable_average_speed = np.mean(window_data)
|
|
|
|
+ break
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ self.stable_average_speed = stable_average_speed
|
|
|
|
+
|
|
|
|
+ def _find_closest_time_stamp_cruise(self, df, target_speed, start_index):
|
|
|
|
+ """
|
|
|
|
+ 在给定的数据帧df中,从start_index索引位置开始,查找与目标速度target_speed最接近的时间戳。
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ df (pd.DataFrame): 包含速度和时间戳等信息的数据帧,需要至少包含'speedX'和'simTime'两列。
|
|
|
|
+ target_speed (float): 目标速度值,用于在数据帧中查找最接近此值的时间戳。
|
|
|
|
+ start_index (int): 开始查找的索引位置,即在数据帧df中从该索引位置开始向后查找。
|
|
|
|
+
|
|
|
|
+ Returns:
|
|
|
|
+ pd.Timestamp: 与目标速度最接近的时间戳。
|
|
|
|
+
|
|
|
|
+ """
|
|
|
|
+ subset = df.loc[start_index + 1:]
|
|
|
|
+ speed_diff = np.abs(subset['speedX'] - target_speed)
|
|
|
|
+ closest_index = speed_diff.idxmin()
|
|
|
|
+ closest_timestamp = subset.loc[closest_index, 'simTime']
|
|
|
|
+ return closest_timestamp
|
|
|
|
+
|
|
|
|
+ def data_analyze(self):
|
|
|
|
+ first_change_index = self._get_first_change_index_cruise()
|
|
|
|
+
|
|
|
|
+ set_cruise_speed = self.df_acc.loc[first_change_index, 'set_cruise_speed']
|
|
|
|
+ self._find_stable_speed_cruise(window_size=4, percent_deviation=5, set_value=set_cruise_speed)
|
|
|
|
+
|
|
|
|
+ initial_speed = self.df_acc.loc[first_change_index, 'speedX']
|
|
|
|
+
|
|
|
|
+ target_speed_90 = initial_speed + (self.stable_average_speed - initial_speed) * 0.9
|
|
|
|
+ target_speed_10 = initial_speed + (self.stable_average_speed - initial_speed) * 0.1
|
|
|
|
+
|
|
|
|
+ timestamp_at_10 = self._find_closest_time_stamp_cruise(self.df_acc, target_speed_10, first_change_index)
|
|
|
|
+ timestamp_at_90 = self._find_closest_time_stamp_cruise(self.df_acc, target_speed_90, first_change_index)
|
|
|
|
+
|
|
|
|
+ print(f"Closest speed at 10% range from set speed: {timestamp_at_10}")
|
|
|
|
+ print(f"Closest speed at 90% range from set speed: {timestamp_at_90}")
|
|
|
|
+
|
|
|
|
+ self.rise_time_cruise = timestamp_at_90 - timestamp_at_10
|
|
|
|
+ self.result['value'] = [round(self.rise_time_cruise, 3)]
|
|
|
|
+ print(f"Rise time: {self.rise_time_cruise}")
|
|
|
|
+
|
|
|
|
+ def markline_statistic(self):
|
|
|
|
+ pass
|
|
|
|
+
|
|
|
|
+ def report_data_statistic(self):
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ self.result['tableData']['avg'] = self.result['value'][0] if not self.df_acc.empty else '-'
|
|
|
|
+ self.result['tableData']['max'] = '-'
|
|
|
|
+ self.result['tableData']['min'] = '-'
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ self.result['reportData']['data'] = []
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ self.result['reportData']['markLine'] = []
|
|
|
|
+
|
|
|
|
+ self.result['reportData']['range'] = [0, 1.2]
|
|
|
|
+
|
|
|
|
+ def run(self):
|
|
|
|
+
|
|
|
|
+ logger.info(f"[case:{self.case_name}] Custom metric:[rise_time_cruise:{self.result['name']}] evaluate.")
|
|
|
|
+
|
|
|
|
+ try:
|
|
|
|
+ self.data_extract()
|
|
|
|
+ except Exception as e:
|
|
|
|
+ logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
|
|
|
|
+
|
|
|
|
+ try:
|
|
|
|
+ self.data_analyze()
|
|
|
|
+ except Exception as e:
|
|
|
|
+ logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
|
|
|
|
+
|
|
|
|
+ try:
|
|
|
|
+ self.report_data_statistic()
|
|
|
|
+ except Exception as e:
|
|
|
|
+ logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|