#!/usr/bin/env python
# -*- coding: utf-8 -*-
##################################################################
#
# Copyright (c) 2023 CICV, Inc. All Rights Reserved
#
##################################################################
"""
@Authors:           zhangyu
@Data:              2024/02/21
@Last Modified:     2024/02/21
@Summary:           The template of custom indicator.
"""

"""
设计思路:
最大航向偏差角
"""

import math
import pandas as pd
import numpy as np
from common import zip_time_pairs, continuous_group
from log import logger

"""import functions"""


# custom metric codes
class CustomMetric(object):
    def __init__(self, all_data, case_name):
        self.data = all_data
        self.optimal_dict = self.data.config
        self.case_name = case_name
        self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])

        self.df = pd.DataFrame()
        self.ego_df = pd.DataFrame()
        self.df_follow = pd.DataFrame()
        self.roadMark_df = pd.DataFrame()
        self.roadPos_df = pd.DataFrame()

        self.time_list_follow = list()
        self.frame_list_follow = list()
        self.dist_list = list()
        self.dist_deviation_list = list()
        self.dist_deviation_list_full_time = list()

        self.result = {
            "name": "最大航向角偏差",
            "value": [],
            # "weight": [],
            "tableData": {
                "avg": "",  # 平均值,或指标值
                "max": "",
                "min": ""
            },
            "reportData": {
                "name": "最大航向角偏差(m)",
                # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
                "data": [],
                "markLine": [],
                "range": [],
            },
            "statusFlag": {}
        }
        self.run()
        print(f"指标03: 最大航向角偏差: {self.result['value']}")

    def data_extract(self):
        self.df = self.data.object_df
        self.ego_df = self.data.object_df[self.data.object_df.playerId == 1]
        self.df_follow = self.df[self.df['ACC_status'] == "Shut_off"].copy()  # 数字3对应ICA的Active
        # self.df_follow = self.df[self.df['ACC_status'] == "Active"].copy()  # 数字3对应ICA的Active
        self.roadMark_df = self.data.road_mark_df
        self.roadPos_df = self.data.road_pos_df

        if self.roadMark_df.empty:
            self.result['statusFlag']['function_LKA'] = False
        else:
            self.result['statusFlag']['function_LKA'] = True

    def dist(self, x1, y1, x2, y2):
        dis = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
        return dis

    def Compute_nearby_distance_to_lane_boundary(self, x, width_ego):
        if x.lateralDist < abs(x.right_lateral_distance):
            return x.lateralDist - width_ego / 2
        else:
            return abs(x.right_lateral_distance) - width_ego / 2

    def data_analyze(self):
        # 提取自车宽度
        roadPos_df = self.roadPos_df
        player_df = self.df
        road_mark_df = self.roadMark_df
        ego_df = player_df[player_df.playerId == 1].reset_index(drop=True)

        # 左车道线曲率,右车道线曲率,求二者平均值,计算车道线曲率,再与自车朝向相减
        road_mark_left_df = road_mark_df[road_mark_df.id == 0].reset_index(drop=True)
        road_mark_right_df = road_mark_df[road_mark_df.id == 2].reset_index(drop=True)
        road_mark_left_df['curvHor_left'] = road_mark_left_df['curvHor']
        road_mark_left_df['curvHor_right'] = road_mark_right_df['curvHor']
        road_mark_left_df['curvHor_middle'] = road_mark_left_df[['curvHor_left', 'curvHor_right']].apply( \
            lambda x: (x['curvHor_left'] + x['curvHor_right']) / 2, axis=1)
        ego_df['curvHor_middle'] = road_mark_left_df['curvHor_middle']
        ego_df['heading_deviation_abs'] = ego_df[['curvHor_middle', 'posH']].apply( \
            lambda x: abs(x['posH'] - x['curvHor_middle']), axis=1)
        row_with_max_value = max(ego_df['heading_deviation_abs'])
        self.result['value'] = [row_with_max_value]
        self.time_list_follow = ego_df['simTime'].values.tolist()
        self.frame_list_follow = ego_df['simFrame'].values.tolist()
        self.dist_deviation_list = ego_df['heading_deviation_abs'].values.tolist()

    def markline_statistic(self):
        unfunc_df = pd.DataFrame({'simTime': self.time_list_follow, 'simFrame': self.frame_list_follow,
                                  'dist_deviation': self.dist_deviation_list})
        unfunc_df = unfunc_df[unfunc_df['simFrame'] > 1]
        # v_df = unfunc_df[unfunc_df['dist_deviation'] > 0]
        v_df = unfunc_df
        v_df = v_df[['simTime', 'simFrame', 'dist_deviation']]
        v_follow_df = continuous_group(v_df)
        v_follow_df['type'] = "ICA"
        self.markline_df = pd.concat([self.markline_df, v_follow_df], ignore_index=True)

    def report_data_statistic(self):
        time_list = self.ego_df['simTime'].values.tolist()
        graph_list = [x for x in self.dist_deviation_list if not np.isnan(x)]
        self.result['tableData']['avg'] = f'{np.mean(graph_list):.2f}' if graph_list else 0
        self.result['tableData']['max'] = f'{max(graph_list):.2f}' if graph_list else 0
        self.result['tableData']['min'] = f'{min(graph_list):.2f}' if graph_list else 0

        zip_vs_time = zip_time_pairs(time_list, self.dist_deviation_list)
        self.result['reportData']['data'] = zip_vs_time

        self.markline_statistic()
        markline_slices = self.markline_df.to_dict('records')
        self.result['reportData']['range'] = f"[-1.875, 1.875]"

    def run(self):
        logger.info(f"[case:{self.case_name}] Custom metric:[ica_distance_deviation:{self.result['name']}] evaluate.")

        try:
            self.data_extract()
        except Exception as e:
            logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)

        try:
            self.data_analyze()
        except Exception as e:
            logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)

        try:
            self.report_data_statistic()
        except Exception as e:
            logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)

# if __name__ == "__main__":
#     pass