#!/usr/bin/env python
# -*- coding: utf-8 -*-
##################################################################
#
# Copyright (c) 2023 CICV, Inc. All Rights Reserved
#
##################################################################
"""
@Authors:           zhanghaiwen(zhanghaiwen@china-icv.cn), xieguijin(xieguijin@china-icv.cn), yangzihao(yangzihao@china-icv.cn)
@Data:              2023/07/25
@Last Modified:     2023/07/26
@Summary:           safe metrics
"""

import sys

sys.path.append('../common')
sys.path.append('../modules')
sys.path.append('../results')

import math
import numpy as np
import pandas as pd

from collections import defaultdict
import scipy.integrate as spi
from score_weight import cal_score_with_priority, cal_weight_from_80
from common import score_grade, string_concatenate, replace_key_with_value, score_over_100


class Safe(object):
    """
    Class for achieving safe metrics for autonomous driving.

    Attributes:
        df: Vehicle driving data, stored in dataframe format.
        df_drivectrl: Vehcile driving control data, including brakepedal, throttle pedal and steerignwheel.

    Methods:
        _safe_param_cal_new: Calculate parameters for evaluateion.
        _cal_v_ego_projection: Calculate ego car velocity project over distance.
        _cal_v_projection: Calculate relative velocity project over distance.
        _cal_a_projection: Calculate relative acceleration project over distance.
        _calculate_derivative: Calculate derivative.
        _cal_relative_angular_v: Calculate relative angular velocity.
        _death_pr: Calculate death probability.
        _cal_collisionRisk_level: Calculate collisionRisk level.
        dist: Calculate distance of two cars.

    """

    def __init__(self, data_processed, custom_data, scoreModel):
        self.eval_data = pd.DataFrame()
        self.data_processed = data_processed
        self.scoreModel = scoreModel

        self.df = data_processed.object_df.copy()
        self.ego_df = data_processed.ego_data
        self.obj_id_list = data_processed.obj_id_list

        # config infos for calculating score
        self.config = data_processed.config
        safe_config = self.config.config['safe']
        self.safe_config = safe_config

        # common data
        self.bulitin_metric_list = self.config.builtinMetricList

        # dimension data
        self.weight_custom = safe_config['weightCustom']
        self.metric_list = safe_config['metric']
        self.type_list = safe_config['type']
        self.type_name_dict = safe_config['typeName']
        self.name_dict = safe_config['name']
        self.unit_dict = safe_config['unit']

        # custom metric data
        self.customMetricParam = safe_config['customMetricParam']
        self.custom_metric_list = list(self.customMetricParam.keys())
        self.custom_data = custom_data
        self.custom_param_dict = {}

        # score data
        self.weight = safe_config['weightDimension']

        self.weight_type_dict = safe_config['typeWeight']
        self.weight_type_list = safe_config['typeWeightList']

        self.weight_dict = safe_config['weight']
        self.weight_list = safe_config['weightList']

        self.priority_dict = safe_config['priority']
        self.priority_list = safe_config['priorityList']

        self.kind_dict = safe_config['kind']
        self.kind1_dict = self.kind_dict[0]
        self.optimal_dict = safe_config['optimal']
        self.optimal1_dict = self.optimal_dict[0]
        self.multiple_dict = safe_config['multiple']
        self.kind_list = safe_config['kindList']
        self.optimal_list = safe_config['optimalList']
        self.multiple_list = safe_config['multipleList']

        self.metric_dict = safe_config['typeMetricDict']
        # self.time_metric_list = self.metric_dict['safeTime']
        # self.distance_metric_list = self.metric_dict['safeDistance']

        # lists of drving control info
        self.time_list = data_processed.driver_ctrl_data['time_list']
        self.frame_list = self.ego_df['simFrame'].values.tolist()

        self.collisionRisk = 0
        self.empty_flag = True

        # no car following scene
        if len(self.obj_id_list) > 1:
            self.unsafe_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
            self.unsafe_time_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
            self.unsafe_dist_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
            # self.unsafe_acce_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
            self.unsafe_acce_drac_df = pd.DataFrame(
                columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
            self.unsafe_acce_xtn_df = pd.DataFrame(
                columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
            self.unsafe_prob_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
            self.most_dangerous = {}
            self.pass_percent = {}
            self._safe_param_cal_new()

    def _safe_param_cal_new(self):
        """

        """
        Tc = 0.3
        rho = 0.3  # 驾驶员制动反应时间
        ego_accel_max = 6  # 自车油门最大加速度
        obj_decel_max = 8  # 前车刹车最大减速度
        ego_decel_min = 1  # 自车刹车最小减速度 ug
        ego_decel_lon_max = 8
        ego_decel_lat_max = 1

        # 构建双层字典数据结构
        obj_dict = defaultdict(dict)
        obj_data_dict = self.df.to_dict('records')

        for item in obj_data_dict:
            obj_dict[item['simFrame']][item['playerId']] = item

        df_list = []
        EGO_PLAYER_ID = 1

        # self.empty_flag = True
        for frame_num in self.frame_list:
            ego_data = obj_dict[frame_num][EGO_PLAYER_ID]
            v1 = ego_data['v'] / 3.6  # km/h to m/s
            x1 = ego_data['posX']
            y1 = ego_data['posY']
            h1 = ego_data['posH']
            len1 = ego_data['dimX']
            width1 = ego_data['dimY']
            o_x1 = ego_data['offX']
            v_x1 = ego_data['speedX'] / 3.6  # km/h to m/s
            v_y1 = ego_data['speedY'] / 3.6  # km/h to m/s
            a_x1 = ego_data['accelX']
            a_y1 = ego_data['accelY']
            # a1 = ego_data['accel']

            for playerId in self.obj_id_list:
                if playerId == EGO_PLAYER_ID:
                    continue

                try:
                    obj_data = obj_dict[frame_num][playerId]
                except KeyError:
                    continue

                x2 = obj_data['posX']
                y2 = obj_data['posY']

                dist = self.dist(x1, y1, x2, y2)
                obj_data['dist'] = dist

                v_x2 = obj_data['speedX'] / 3.6  # km/h to m/s
                v_y2 = obj_data['speedY'] / 3.6  # km/h to m/s

                v2 = obj_data['v'] / 3.6  # km/h to m/s
                # h2 = obj_data['posH']
                len2 = obj_data['dimX']
                width2 = obj_data['dimY']
                o_x2 = obj_data['offX']
                a_x2 = obj_data['accelX']
                a_y2 = obj_data['accelY']
                # a2 = obj_data['accel']

                dx, dy = x2 - x1, y2 - y1

                # 定义矢量A和x轴正向向量x
                A = np.array([dx, dy])
                x = np.array([1, 0])

                # 计算点积和向量长度
                dot_product = np.dot(A, x)
                vector_length_A = np.linalg.norm(A)
                vector_length_x = np.linalg.norm(x)

                # 计算夹角的余弦值
                cos_theta = dot_product / (vector_length_A * vector_length_x)

                # 将余弦值转换为角度值(弧度制)
                beta = np.arccos(cos_theta)  # 如何通过theta正负确定方向

                lon_d = dist * math.cos(beta - h1)
                lat_d = abs(dist * math.sin(beta - h1))  # 需要增加左正右负的判断,但beta取值为[0,pi)

                obj_dict[frame_num][playerId]['lon_d'] = lon_d
                obj_dict[frame_num][playerId]['lat_d'] = lat_d

                if lon_d > 100 or lon_d < -5 or lat_d > 4:
                    continue

                self.empty_flag = False

                vx, vy = v_x1 - v_x2, v_y1 - v_y2
                ax, ay = a_x2 - a_x1, a_y2 - a_y1

                v_ego_p = self._cal_v_ego_projection(dx, dy, v_x1, v_y1)
                v_obj_p = self._cal_v_ego_projection(dx, dy, v_x2, v_y2)
                vrel_projection_in_dist = self._cal_v_projection(dx, dy, vx, vy)
                arel_projection_in_dist = self._cal_a_projection(dx, dy, vx, vy, ax, ay, x1, y1, x2, y2, v_x1, v_y1,
                                                                 v_x2, v_y2)

                obj_dict[frame_num][playerId]['vrel_projection_in_dist'] = vrel_projection_in_dist
                obj_dict[frame_num][playerId]['arel_projection_in_dist'] = arel_projection_in_dist
                obj_dict[frame_num][playerId]['v_ego_projection_in_dist'] = v_ego_p
                obj_dict[frame_num][playerId]['v_obj_projection_in_dist'] = v_obj_p

                obj_type = obj_data['type']

                TTC = self._cal_TTC(dist, vrel_projection_in_dist)
                MTTC = self._cal_MTTC(TTC, vrel_projection_in_dist, arel_projection_in_dist)
                THW = self._cal_THW(dist, v_ego_p)

                # 单车道时可用
                LonSD = self._cal_longitudinal_safe_dist(v_ego_p, v_obj_p, rho, ego_accel_max, ego_decel_min,
                                                         obj_decel_max)

                lat_dist = 0.5
                v_right = v1
                v_left = v2
                a_right_lat_brake_min = 1
                a_left_lat_brake_min = 1
                a_lat_max = 5

                LatSD = self._cal_lateral_safe_dist(lat_dist, v_right, v_left, rho, a_right_lat_brake_min,
                                                    a_left_lat_brake_min,
                                                    a_lat_max)

                DRAC = self._cal_DRAC(dist, vrel_projection_in_dist, len1, len2, width1, width2, o_x1, o_x2)

                lon_a1 = a_x1 * math.cos(h1) + a_y1 * math.sin(h1)
                lon_a2 = a_x2 * math.cos(h1) + a_y2 * math.sin(h1)
                lon_a = abs(lon_a1 - lon_a2)
                lon_d = dist * abs(math.cos(beta - h1))
                lon_v = v_x1 * math.cos(h1) + v_y1 * math.sin(h1)
                BTN = self._cal_BTN_new(lon_a1, lon_a, lon_d, lon_v, ego_decel_lon_max)

                lat_a1 = a_x1 * math.sin(h1) * -1 + a_y1 * math.cos(h1)
                lat_a2 = a_x2 * math.sin(h1) * -1 + a_y2 * math.cos(h1)
                lat_a = abs(lat_a1 - lat_a2)
                lat_d = dist * abs(math.sin(beta - h1))
                lat_v = v_x1 * math.sin(h1) * -1 + v_y1 * math.cos(h1)
                STN = self._cal_STN_new(TTC, lat_a1, lat_a, lat_d, lat_v, ego_decel_lat_max, width1, width2)

                obj_dict[frame_num][playerId]['lat_v_rel'] = v_x1 - v_x2
                obj_dict[frame_num][playerId]['lon_v_rel'] = v_y1 - v_y2

                # BTN = self.cal_BTN(a_y1, ay, dy, vy, max_ay)
                # STN = self.cal_STN(TTC, a_x1, ax, dx, vx, max_ax, len1, len2)

                TTC = None if (not TTC or TTC < 0) else TTC
                MTTC = None if (not MTTC or MTTC < 0) else MTTC
                THW = None if (not THW or THW < 0) else THW

                DRAC = 10 if DRAC >= 10 else DRAC

                if not TTC or TTC > 4000:  # threshold = 4258.41
                    collisionSeverity = 0
                    pr_death = 0
                    collisionRisk = 0
                else:
                    result, error = spi.quad(self._normal_distribution, 0, TTC - Tc)
                    collisionSeverity = 1 - result
                    pr_death = self._death_pr(obj_type, vrel_projection_in_dist)
                    collisionRisk = 0.4 * pr_death + 0.6 * collisionSeverity

                obj_dict[frame_num][playerId]['TTC'] = TTC
                obj_dict[frame_num][playerId]['MTTC'] = MTTC
                obj_dict[frame_num][playerId]['THW'] = THW
                obj_dict[frame_num][playerId]['LonSD'] = LonSD
                obj_dict[frame_num][playerId]['LatSD'] = LatSD
                obj_dict[frame_num][playerId]['DRAC'] = DRAC
                obj_dict[frame_num][playerId]['BTN'] = abs(BTN)
                obj_dict[frame_num][playerId]['STN'] = abs(STN)
                obj_dict[frame_num][playerId]['collisionSeverity'] = collisionSeverity * 100
                obj_dict[frame_num][playerId]['pr_death'] = pr_death * 100
                obj_dict[frame_num][playerId]['collisionRisk'] = collisionRisk * 100

            df_fnum = pd.DataFrame(obj_dict[frame_num].values())
            df_list.append(df_fnum)

        df_safe = pd.concat(df_list)

        col_list = ['simTime', 'simFrame', 'playerId', 'v', 'accel', 'lon_acc', 'lat_acc', 'dist', 'lon_d', 'lat_d',
                    'lat_v_rel', 'lon_v_rel', 'v_ego_projection_in_dist',
                    'v_obj_projection_in_dist', 'vrel_projection_in_dist', 'arel_projection_in_dist',
                    'TTC', 'MTTC', 'THW', 'LonSD', 'LatSD', 'DRAC', 'BTN', 'STN', 'collisionSeverity', 'pr_death',
                    'collisionRisk']

        if not self.empty_flag:
            df_safe = df_safe[col_list].reset_index(drop=True)
        # df_safe.reset_index(drop=True)

        self.eval_data = df_safe.copy()
        self.df = df_safe
        self.df['flag'] = 0

        if not self.empty_flag:
            for metric in self.metric_list:
                if metric in self.bulitin_metric_list:
                    self.df['tmp'] = self.df[metric].apply(lambda x: 1 if x < self.optimal1_dict[metric] else 0)
                    self.df['flag'] = self.df['flag'] + self.df['tmp']

        self.df['unsafe_flag'] = self.df['flag'].apply(lambda x: 1 if x > 0 else 0)

    def _cal_v_ego_projection(self, dx, dy, v_x1, v_y1):
        # 计算 AB 连线的向量 AB
        # dx = x2 - x1
        # dy = y2 - y1

        # 计算 AB 连线的模长 |AB|
        AB_mod = math.sqrt(dx ** 2 + dy ** 2)

        # 计算 AB 连线的单位向量 U_AB
        U_ABx = dx / AB_mod
        U_ABy = dy / AB_mod

        # 计算 A 在 AB 连线上的速度 V1_on_AB
        V1_on_AB = v_x1 * U_ABx + v_y1 * U_ABy

        return V1_on_AB

    def _cal_v_projection(self, dx, dy, vx, vy):
        # 计算 AB 连线的向量 AB
        # dx = x2 - x1
        # dy = y2 - y1

        # 计算 AB 连线的模长 |AB|
        AB_mod = math.sqrt(dx ** 2 + dy ** 2)

        # 计算 AB 连线的单位向量 U_AB
        U_ABx = dx / AB_mod
        U_ABy = dy / AB_mod

        # 计算 A 相对于 B 的速度 V_relative
        # vx = vx1 - vx2
        # vy = vy1 - vy2

        # 计算 A 相对于 B 在 AB 连线上的速度 V_on_AB
        V_on_AB = vx * U_ABx + vy * U_ABy

        return V_on_AB

    def _cal_a_projection(self, dx, dy, vx, vy, ax, ay, x1, y1, x2, y2, v_x1, v_y1, v_x2, v_y2):
        # 计算 AB 连线的向量 AB
        # dx = x2 - x1
        # dy = y2 - y1

        # 计算 θ
        V_mod = math.sqrt(vx ** 2 + vy ** 2)
        AB_mod = math.sqrt(dx ** 2 + dy ** 2)
        if V_mod == 0 or AB_mod == 0:
            return 0

        cos_theta = (vx * dx + vy * dy) / (V_mod * AB_mod)
        theta = math.acos(cos_theta)

        # 计算 AB 连线的模长 |AB|
        AB_mod = math.sqrt(dx ** 2 + dy ** 2)

        # 计算 AB 连线的单位向量 U_AB
        U_ABx = dx / AB_mod
        U_ABy = dy / AB_mod

        # 计算 A 相对于 B 的加速度 a_relative
        # ax = ax1 - ax2
        # ay = ay1 - ay2

        # 计算 A 相对于 B 在 AB 连线上的加速度 a_on_AB
        a_on_AB = ax * U_ABx + ay * U_ABy

        VA = np.array([v_x1, v_y1])
        VB = np.array([v_x2, v_y2])
        D_A = np.array([x1, y1])
        D_B = np.array([x2, y2])
        V_r = VA - VB
        V = np.linalg.norm(V_r)
        w = self._cal_relative_angular_v(theta, D_A, D_B, VA, VB)
        a_on_AB_back = self._calculate_derivative(a_on_AB, w, V, theta)
        return a_on_AB_back

    # 计算相对加速度
    def _calculate_derivative(self, a, w, V, theta):
        # 计算(V×cos(θ))'的值
        # derivative = a * math.cos(theta) - w * V * math.sin(theta)theta
        derivative = a - w * V * math.sin(theta)
        return derivative

    def _cal_relative_angular_v(self, theta, A, B, VA, VB):
        dx = A[0] - B[0]
        dy = A[1] - B[1]
        dvx = VA[0] - VB[0]
        dvy = VA[1] - VB[1]
        # (dx * dvy - dy * dvx)
        angular_velocity = math.sqrt(dvx ** 2 + dvy ** 2) * math.sin(theta) / math.sqrt(dx ** 2 + dy ** 2)
        return angular_velocity

    def _death_pr(self, obj_type, v_relative):
        if obj_type == 5:
            p_death = 1 / (1 + np.exp(7.723 - 0.15 * v_relative))
        else:
            p_death = 1 / (1 + np.exp(8.192 - 0.12 * v_relative))
        return p_death

    def _cal_collisionRisk_level(self, obj_type, v_relative, collisionSeverity):
        if obj_type == 5:
            p_death = 1 / (1 + np.exp(7.723 - 0.15 * v_relative))
        else:
            p_death = 1 / (1 + np.exp(8.192 - 0.12 * v_relative))
        collisionRisk = 0.4 * p_death + 0.6 * collisionSeverity
        return collisionRisk

    # 求两车之间当前距离
    def dist(self, x1, y1, x2, y2):
        dist = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
        return dist

    # TTC (time to collision)
    def _cal_TTC(self, dist, vrel_projection_in_dist):
        if vrel_projection_in_dist == 0:
            return math.inf
        TTC = dist / vrel_projection_in_dist
        return TTC

    def _cal_MTTC(self, dist, vrel_projection_in_dist, arel_projection_in_dist):
        MTTC = math.nan
        if arel_projection_in_dist != 0:
            tmp = vrel_projection_in_dist ** 2 + 2 * arel_projection_in_dist * dist
            if tmp < 0:
                return math.nan
            t1 = (-1 * vrel_projection_in_dist - math.sqrt(tmp)) / arel_projection_in_dist
            t2 = (-1 * vrel_projection_in_dist + math.sqrt(tmp)) / arel_projection_in_dist
            if t1 > 0 and t2 > 0:
                if t1 >= t2:
                    MTTC = t2
                elif t1 < t2:
                    MTTC = t1
            elif t1 > 0 and t2 <= 0:
                MTTC = t1
            elif t1 <= 0 and t2 > 0:
                MTTC = t2
        if arel_projection_in_dist == 0 and vrel_projection_in_dist > 0:
            MTTC = dist / vrel_projection_in_dist
        return MTTC

    # THW (time headway)
    def _cal_THW(self, dist, v_ego_projection_in_dist):
        if not v_ego_projection_in_dist:
            THW = None
        else:
            THW = dist / v_ego_projection_in_dist
        return THW

    def velocity(self, v_x, v_y):
        v = math.sqrt(v_x ** 2 + v_y ** 2) * 3.6
        return v

    def _cal_longitudinal_safe_dist(self, v_ego_p, v_obj_p, rho, ego_accel_max, ego_decel_min, ego_decel_max):
        lon_dist_min = v_ego_p * rho + ego_accel_max * (rho ** 2) / 2 + (v_ego_p + rho * ego_accel_max) ** 2 / (
                2 * ego_decel_min) - v_obj_p ** 2 / (2 * ego_decel_max)
        return lon_dist_min

    def _cal_lateral_safe_dist(self, lat_dist, v_right, v_left, rho, a_right_lat_brake_min, a_left_lat_brake_min,
                               a_lat_max):
        v_right_rho = v_right + rho * a_lat_max
        v_left_rho = v_left + rho * a_lat_max
        dist_min = lat_dist + ((v_right + v_right_rho) * rho / 2 + v_right_rho ** 2 / a_right_lat_brake_min / 2 + (
                (v_left + v_right_rho) * rho / 2) + v_left_rho ** 2 / a_left_lat_brake_min / 2)
        return dist_min

    # DRAC (decelerate required avoid collision)
    def _cal_DRAC(self, dist, vrel_projection_in_dist, len1, len2, width1, width2, o_x1, o_x2):
        dist_length = dist - (len2 / 2 - o_x2 + len1 / 2 + o_x1)  # 4.671
        if dist_length < 0:
            dist_width = dist - (width2 / 2 + width1 / 2)
            if dist_width < 0:
                return math.inf
            else:
                d = dist_width
        else:
            d = dist_length
        DRAC = vrel_projection_in_dist ** 2 / (2 * d)
        return DRAC

    # BTN (brake threat number)
    def _cal_BTN_new(self, lon_a1, lon_a, lon_d, lon_v, ego_decel_lon_max):
        BTN = (lon_a1 + lon_a - lon_v ** 2 / (2 * lon_d)) / ego_decel_lon_max  # max_ay为此车可实现的最大纵向加速度,目前为本次实例里的最大值
        return BTN

    # STN (steer threat number)
    def _cal_STN_new(self, ttc, lat_a1, lat_a, lat_d, lat_v, ego_decel_lat_max, width1, width2):
        STN = (lat_a1 + lat_a + 2 / ttc ** 2 * (lat_d + abs(ego_decel_lat_max * lat_v) * (
                width1 + width2) / 2 + abs(lat_v * ttc))) / ego_decel_lat_max
        return STN

    # BTN (brake threat number)
    def cal_BTN(self, a_y1, ay, dy, vy, max_ay):
        BTN = (a_y1 + ay - vy ** 2 / (2 * dy)) / max_ay  # max_ay为此车可实现的最大纵向加速度,目前为本次实例里的最大值
        return BTN

    # STN (steer threat number)
    def cal_STN(self, ttc, a_x1, ax, dx, vx, max_ax, width1, width2):
        STN = (a_x1 + ax + 2 / ttc ** 2 * (dx + np.sign(max_ax * vx) * (width1 + width2) / 2 + vx * ttc)) / max_ax
        return STN

    # 追尾碰撞风险
    def _normal_distribution(self, x):
        mean = 1.32
        std_dev = 0.26
        return (1 / (math.sqrt(std_dev * 2 * math.pi))) * math.exp(-0.5 * (x - mean) ** 2 / std_dev)

    def continuous_group(self, df):
        time_list = df['simTime'].values.tolist()
        frame_list = df['simFrame'].values.tolist()

        group_time = []
        group_frame = []
        sub_group_time = []
        sub_group_frame = []

        for i in range(len(frame_list)):
            if not sub_group_time or frame_list[i] - frame_list[i - 1] <= 1:
                sub_group_time.append(time_list[i])
                sub_group_frame.append(frame_list[i])
            else:
                group_time.append(sub_group_time)
                group_frame.append(sub_group_frame)
                sub_group_time = [time_list[i]]
                sub_group_frame = [frame_list[i]]

        group_time.append(sub_group_time)
        group_frame.append(sub_group_frame)
        group_time = [g for g in group_time if len(g) >= 2]
        group_frame = [g for g in group_frame if len(g) >= 2]

        # 输出图表值
        time = [[g[0], g[-1]] for g in group_time]
        frame = [[g[0], g[-1]] for g in group_frame]

        unfunc_time_df = pd.DataFrame(time, columns=['start_time', 'end_time'])
        unfunc_frame_df = pd.DataFrame(frame, columns=['start_frame', 'end_frame'])

        unfunc_df = pd.concat([unfunc_time_df, unfunc_frame_df], axis=1)
        return unfunc_df

    # def continuous_group_old(self, df):
    #     time_list = df['simTime'].values.tolist()
    #     frame_list = df['simFrame'].values.tolist()
    #
    #     group = []
    #     sub_group = []
    #
    #     for i in range(len(frame_list)):
    #         if not sub_group or frame_list[i] - frame_list[i - 1] <= 1:
    #             sub_group.append(time_list[i])
    #         else:
    #             group.append(sub_group)
    #             sub_group = [time_list[i]]
    #
    #     group.append(sub_group)
    #     group = [g for g in group if len(g) >= 2]
    #
    #     # 输出图表值
    #     time = [[g[0], g[-1]] for g in group]
    #     unsafe_df = pd.DataFrame(time, columns=['start_time', 'end_time'])
    #
    #     return unsafe_df

    def unsafe_time_ttc_df_statistic(self, obj_df):
        ttc_df = obj_df[obj_df['TTC'] < self.optimal1_dict['TTC']]
        ttc_df = ttc_df[['simTime', 'simFrame', 'TTC']]
        ttc_time_df = self.continuous_group(ttc_df)
        ttc_time_df['type'] = 'TTC'
        # ttc_time_df['type'] = 'time'
        self.unsafe_time_df = pd.concat([self.unsafe_time_df, ttc_time_df], ignore_index=True)

    def unsafe_time_mttc_df_statistic(self, obj_df):
        mttc_df = obj_df[obj_df['MTTC'] < self.optimal1_dict['MTTC']]
        mttc_df = mttc_df[['simTime', 'simFrame', 'MTTC']]
        mttc_time_df = self.continuous_group(mttc_df)
        mttc_time_df['type'] = 'MTTC'
        # mttc_time_df['type'] = 'time'
        self.unsafe_time_df = pd.concat([self.unsafe_time_df, mttc_time_df], ignore_index=True)

    def unsafe_time_thw_df_statistic(self, obj_df):
        thw_df = obj_df[obj_df['THW'] < self.optimal1_dict['THW']]
        thw_df = thw_df[['simTime', 'simFrame', 'THW']]
        thw_time_df = self.continuous_group(thw_df)
        thw_time_df['type'] = 'THW'
        # thw_time_df['type'] = 'time'
        self.unsafe_time_df = pd.concat([self.unsafe_time_df, thw_time_df], ignore_index=True)

    def unsafe_distance_lonsd_df_statistic(self, obj_df):
        lonsd_df = obj_df[obj_df['LonSD'] < self.optimal1_dict['LonSD']]
        lonsd_df = lonsd_df[['simTime', 'simFrame', 'LonSD']]
        lonsd_dist_df = self.continuous_group(lonsd_df)
        lonsd_dist_df['type'] = 'LonSD'
        # lonsd_dist_df['type'] = 'distance'
        self.unsafe_dist_df = pd.concat([self.unsafe_dist_df, lonsd_dist_df], ignore_index=True)

    def unsafe_distance_latsd_df_statistic(self, obj_df):
        latsd_df = obj_df[obj_df['LatSD'] < self.optimal1_dict['LatSD']]
        latsd_df = latsd_df[['simTime', 'simFrame', 'LatSD']]
        latsd_dist_df = self.continuous_group(latsd_df)
        latsd_dist_df['type'] = 'LatSD'
        # latsd_dist_df['type'] = 'distance'
        self.unsafe_dist_df = pd.concat([self.unsafe_dist_df, latsd_dist_df], ignore_index=True)

    def unsafe_acceleration_drac_df_statistic(self, obj_df):
        drac_df = obj_df[obj_df['DRAC'] > self.optimal1_dict['DRAC']]
        drac_df = drac_df[['simTime', 'simFrame', 'DRAC']]
        drac_acce_df = self.continuous_group(drac_df)
        drac_acce_df['type'] = 'DRAC'
        # drac_acce_df['type'] = 'acceleration'
        self.unsafe_acce_drac_df = pd.concat([self.unsafe_acce_drac_df, drac_acce_df], ignore_index=True)

    def unsafe_acceleration_btn_df_statistic(self, obj_df):
        btn_df = obj_df[obj_df['BTN'] > self.optimal1_dict['BTN']]
        btn_df = btn_df[['simTime', 'simFrame', 'BTN']]
        btn_acce_df = self.continuous_group(btn_df)
        btn_acce_df['type'] = 'BTN'
        # btn_acce_df['type'] = 'acceleration'
        self.unsafe_acce_xtn_df = pd.concat([self.unsafe_acce_xtn_df, btn_acce_df], ignore_index=True)

    def unsafe_acceleration_stn_df_statistic(self, obj_df):
        stn_df = obj_df[obj_df['STN'] > self.optimal1_dict['STN']]
        stn_df = stn_df[['simTime', 'simFrame', 'STN']]
        stn_acce_df = self.continuous_group(stn_df)
        stn_acce_df['type'] = 'STN'
        # stn_acce_df['type'] = 'acceleration'
        self.unsafe_acce_xtn_df = pd.concat([self.unsafe_acce_xtn_df, stn_acce_df], ignore_index=True)

    def unsafe_probability_cr_df_statistic(self, obj_df):
        cr_df = obj_df[obj_df['collisionRisk'] > self.optimal1_dict['collisionRisk']]
        cr_df = cr_df[['simTime', 'simFrame', 'collisionRisk']]
        cr_prob_df = self.continuous_group(cr_df)
        cr_prob_df['type'] = 'collisionRisk'
        # cr_prob_df['type'] = 'probability'
        self.unsafe_prob_df = pd.concat([self.unsafe_prob_df, cr_prob_df], ignore_index=True)

    def unsafe_probability_cs_df_statistic(self, obj_df):
        cs_df = obj_df[obj_df['collisionSeverity'] > self.optimal1_dict['collisionSeverity']]
        cs_df = cs_df[['simTime', 'simFrame', 'collisionSeverity']]
        cs_prob_df = self.continuous_group(cs_df)
        cs_prob_df['type'] = 'collisionSeverity'
        # cs_prob_df['type'] = 'probability'
        self.unsafe_prob_df = pd.concat([self.unsafe_prob_df, cs_prob_df], ignore_index=True)

    def _safe_statistic_most_dangerous(self):

        min_list = ['TTC', 'MTTC', 'THW', 'LonSD', 'LatSD']
        max_list = ['DRAC', 'BTN', 'STN', 'collisionRisk', 'collisionSeverity']

        for metric in min_list:
            if metric in self.metric_list:
                if metric in self.df.columns:
                    self.most_dangerous[metric] = self.df[metric].min()
                else:
                    self.most_dangerous[metric] = self.optimal1_dict[metric]

                if np.isnan(self.most_dangerous[metric]):
                    self.most_dangerous[metric] = self.optimal1_dict[metric]

        for metric in max_list:
            if metric in self.metric_list:
                if metric in self.df.columns:
                    self.most_dangerous[metric] = self.df[metric].max()
                else:
                    self.most_dangerous[metric] = self.optimal1_dict[metric]

                # self.most_dangerous[metric] = self.df[metric].max()
                if np.isnan(self.most_dangerous[metric]):
                    self.most_dangerous[metric] = self.optimal1_dict[metric]

    def _safe_statistic_pass_percent(self):

        greater_list = ['TTC', 'MTTC', 'THW', 'LonSD', 'LatSD']
        lesser_list = ['DRAC', 'BTN', 'STN', 'collisionRisk', 'collisionSeverity']

        for metric in greater_list:
            if metric in self.metric_list:
                if metric in self.df.columns:
                    self.pass_percent[metric] = self.df[self.df[metric] >= self.optimal1_dict[metric]][metric].count() / \
                                                self.df[metric].count()
                else:
                    self.pass_percent[metric] = 0.8

                if np.isnan(self.pass_percent[metric]):
                    self.pass_percent[metric] = 0.8

        for metric in lesser_list:
            if metric in self.metric_list:
                if metric in self.df.columns:
                    self.pass_percent[metric] = self.df[self.df[metric] <= self.optimal1_dict[metric]][metric].count() / \
                                                self.df[metric].count()
                else:
                    self.pass_percent[metric] = 0.8

                if np.isnan(self.pass_percent[metric]):
                    self.pass_percent[metric] = 0.8

        if "collisionSeverity" in self.metric_list:
            self.collisionRisk = 1 - self.pass_percent["collisionSeverity"]

    def _safe_statistic(self):
        # list_metric = ["TTC","MTTC","THW","LonSD","LatSD","DRAC","BTN","STN","collisionSeverity", "collisionRisk"]
        self._safe_statistic_most_dangerous()
        self._safe_statistic_pass_percent()

        most_dangerous_list = [abs(value) for key, value in self.most_dangerous.items() if key in self.metric_list]
        pass_percent_list = [abs(value) for key, value in self.pass_percent.items() if key in self.metric_list]

        arr_safe = [most_dangerous_list + pass_percent_list]
        return arr_safe

    def custom_metric_param_parser(self, param_list):
        """
        param_dict = {
            "paramA" [
                {
                    "kind": "-1",
                    "optimal": "1",
                    "multiple": ["0.5","5"],
                    "spare1": null,
                    "spare2": null
                }
            ]
        }
        """
        kind_list = []
        optimal_list = []
        multiple_list = []
        spare_list = []
        # spare1_list = []
        # spare2_list = []

        for i in range(len(param_list)):
            kind_list.append(int(param_list[i]['kind']))
            optimal_list.append(float(param_list[i]['optimal']))
            multiple_list.append([float(x) for x in param_list[i]['multiple']])
            spare_list.append([item["param"] for item in param_list[i]["spare"]])
            # spare1_list.append(param_list[i]['spare1'])
            # spare2_list.append(param_list[i]['spare2'])

        result = {
            "kind": kind_list,
            "optimal": optimal_list,
            "multiple": multiple_list,
            "spare": spare_list,
            # "spare1": spare1_list,
            # "spare2": spare2_list
        }
        return result

    def custom_metric_score(self, metric, value, param_list):
        """

        """
        param = self.custom_metric_param_parser(param_list)
        self.custom_param_dict[metric] = param

        score_model = self.scoreModel(param['kind'], param['optimal'], param['multiple'], np.array([value]))
        score_sub = score_model.cal_score()
        score = sum(score_sub) / len(score_sub)
        return score

    def _safe_no_obj_statistic(self):
        # list_metric = ["TTC","MTTC","THW","LonSD","LatSD","DRAC","BTN","STN","collisionSeverity", "collisionRisk"]

        most_dangerous_list = [abs(value) for key, value in self.optimal1_dict.items() if key in self.metric_list]
        pass_percent_list = [1.0] * len(self.optimal1_dict.keys())

        arr_safe = [most_dangerous_list + pass_percent_list]
        return arr_safe

    def safe_score_new(self):
        """

        """
        score_metric_dict = {}
        score_type_dict = {}

        if len(self.obj_id_list) == 1:
            arr_safe = self._safe_no_obj_statistic()
        else:
            arr_safe = self._safe_statistic()

        print("\n[安全性表现及得分情况]")
        print("安全性各指标值:", [[round(num, 2) for num in row] for row in arr_safe])

        if arr_safe:
            arr_safe = np.array(arr_safe)
            score_model = self.scoreModel(self.kind_list, self.optimal_list, self.multiple_list, arr_safe)
            score_sub = score_model.cal_score()
            metric_list = [x for x in self.metric_list if x in self.config.builtinMetricList]
            metric_num = len(metric_list)
            if len(self.obj_id_list) > 1 and not self.empty_flag:
                score_sub[-metric_num:] = [num * 1.25 for num in score_sub[-metric_num:]]
            else:
                score_sub = [80] * len(score_sub)

            score_sub = list(map(lambda x: 100 if np.isnan(x) else x, score_sub))  # 对None值做特判

            score_metric = []
            for i in range(metric_num):
                score_tmp = (score_sub[i] + score_sub[i + metric_num]) / 2
                score_metric.append(round(score_tmp, 2))

            score_metric_dict = {key: value for key, value in zip(metric_list, score_metric)}

        for metric in self.custom_metric_list:
            value = self.custom_data[metric]['value']
            param_list = self.customMetricParam[metric]
            score = self.custom_metric_score(metric, value, param_list)
            score_metric_dict[metric] = round(score, 2)

        score_metric_dict = {key: score_metric_dict[key] for key in self.metric_list}
        score_metric = list(score_metric_dict.values())

        if self.weight_custom:  # 用户自定义权重
            score_metric_with_weight_dict = {key: score_metric_dict[key] * self.weight_dict[key] for key in
                                             self.weight_dict}
            for type in self.type_list:
                type_score = sum(
                    value for key, value in score_metric_with_weight_dict.items() if key in self.metric_dict[type])
                score_type_dict[type] = round(type_score, 2) if type_score < 100 else 100

            score_type_with_weight_dict = {key: score_type_dict[key] * self.weight_type_dict[key] for key in
                                           score_type_dict}

            score_safe = sum(score_type_with_weight_dict.values())

        else:  # 动态客观赋权
            self.weight_list = cal_weight_from_80(score_metric)
            self.weight_dict = {key: value for key, value in zip(self.metric_list, self.weight_list)}

            score_safe = cal_score_with_priority(score_metric, self.weight_list, self.priority_list)

            for type in self.type_list:
                type_weight = sum(value for key, value in self.weight_dict.items() if key in self.metric_dict[type])
                for key, value in self.weight_dict.items():
                    if key in self.metric_dict[type]:
                        # self.weight_dict[key] = round(value / type_weight, 4)
                        self.weight_dict[key] = value / type_weight

                type_score_metric = [value for key, value in score_metric_dict.items() if key in self.metric_dict[type]]
                type_weight_list = [value for key, value in self.weight_dict.items() if key in self.metric_dict[type]]
                type_priority_list = [value for key, value in self.priority_dict.items() if
                                      key in self.metric_dict[type]]

                type_score = cal_score_with_priority(type_score_metric, type_weight_list, type_priority_list)
                score_type_dict[type] = round(type_score, 2) if type_score < 100 else 100

                for key in self.weight_dict:
                    self.weight_dict[key] = round(self.weight_dict[key], 4)

            score_type = list(score_type_dict.values())
            self.weight_type_list = cal_weight_from_80(score_type)
            self.weight_type_dict = {key: value for key, value in zip(self.type_list, self.weight_type_list)}

        score_safe = round(score_safe, 2)
        # score_type = [round(x, 2) for key, x in score_type_dict.items()]
        # score_metric = [round(x, 2) for key, x in score_metric_dict.items()]

        print("安全性各指标基准值:", self.optimal_list)
        print(f"安全性得分为:{score_safe:.2f}分。")
        print(f"安全性各类型得分为:{score_type_dict}。")
        print(f"安全性各指标得分为:{score_metric_dict}。")
        # return score_safe, score_type, score_metric
        return score_safe, score_type_dict, score_metric_dict

    # def zip_time_pairs(self, zip_list, upper_limit=9999):
    #     zip_time_pairs = zip(self.time_list, zip_list)
    #     zip_vs_time = [[x, upper_limit if y > upper_limit else y] for x, y in zip_time_pairs if not math.isnan(y)]
    #     return zip_vs_time

    def zip_time_pairs(self, zip_list):
        zip_time_pairs = zip(self.time_list, zip_list)
        zip_vs_time = [[x, "" if math.isnan(y) else y] for x, y in zip_time_pairs]
        return zip_vs_time

    def _get_weight_distribution(self, dimension):
        # get weight distribution
        weight_distribution = {}
        weight_distribution["name"] = self.config.dimension_name[dimension]

        for type in self.type_list:
            type_weight_indexes_dict = {key: f"{self.name_dict[key]}({value * 100:.2f}%)" for key, value in
                                        self.weight_dict.items() if
                                        key in self.metric_dict[type]}

            weight_distribution_type = {
                "weight": f"{self.type_name_dict[type]}({self.weight_type_dict[type] * 100:.2f}%)",
                "indexes": type_weight_indexes_dict
            }
            weight_distribution[type] = weight_distribution_type

        return weight_distribution

    def safe_weight_distribution(self):

        # get weight distribution
        weight_distribution = {}
        weight_distribution["name"] = "安全性"
        if "safeTime" in self.type_list:
            time_weight_indexes_dict = {key: f"{key}({value * 100:.2f}%)" for key, value in self.weight_dict.items() if
                                        key in ['TTC', 'MTTC', 'THW']}

            weight_distribution_time = {
                "timeWeight": f"时间指标({self.weight_type_dict['safeTime'] * 100:.2f}%)",
                "indexes": time_weight_indexes_dict
            }
            weight_distribution["safeTime"] = weight_distribution_time

        if "safeDistance" in self.type_list:
            distance_weight_indexes_dict = {key: f"{key}({value * 100:.2f}%)" for key, value in self.weight_dict.items()
                                            if
                                            key in ['LonSD', 'LatSD']}

            weight_distribution_distance = {
                "distanceWeight": f"距离指标({self.weight_type_dict['safeDistance'] * 100:.2f}%)",
                "indexes": distance_weight_indexes_dict
            }
            weight_distribution["safeDistance"] = weight_distribution_distance

        if "safeAcceleration" in self.type_list:
            acceleration_weight_indexes_dict = {key: f"{key}({value * 100:.2f}%)" for key, value in
                                                self.weight_dict.items() if
                                                key in ['DRAC', 'BTN', 'STN']}

            weight_distribution_acceleration = {
                "accelerationWeight": f"加速度指标({self.weight_type_dict['safeAcceleration'] * 100:.2f}%)",
                "indexes": acceleration_weight_indexes_dict
            }
            weight_distribution["safeAcceleration"] = weight_distribution_acceleration

        if "safeProbability" in self.type_list:
            probability_weight_indexes_dict = {key: f"{key}({value * 100:.2f}%)" for key, value in
                                               self.weight_dict.items() if
                                               key in ['collisionRisk', 'collisionSeverity']}

            weight_distribution_probability = {
                "probabilityWeight": f"概率指标({self.weight_type_dict['safeProbability'] * 100:.2f}%)",
                "indexes": probability_weight_indexes_dict
            }
            weight_distribution["safeProbability"] = weight_distribution_probability

        return weight_distribution

    def normalize_dict_values(self, dictionary):
        # 计算字典中键的数量
        n = len(dictionary)

        # 初始化总和为0
        total_sum = 0

        # 遍历字典,对每个值进行赋值,并累加总和
        for key, value in dictionary.items():
            # 计算当前值,除了最后一个值外都四舍五入到两位小数
            if key != list(dictionary.keys())[-1]:
                new_value = round(1 / n, 2)
            else:
                # 最后一个值的计算:1减去之前所有值的和
                new_value = round(1 - total_sum, 2)

                # 更新字典的值
            dictionary[key] = new_value

            # 累加当前值到总和
            total_sum += new_value

        return dictionary

    def report_statistic(self):
        # time_list = self.data_processed.driver_ctrl_data['time_list']
        brakePedal_list = self.data_processed.driver_ctrl_data['brakePedal_list']
        throttlePedal_list = self.data_processed.driver_ctrl_data['throttlePedal_list']
        steeringWheel_list = self.data_processed.driver_ctrl_data['steeringWheel_list']

        # common parameter calculate
        brake_vs_time = self.zip_time_pairs(brakePedal_list)
        throttle_vs_time = self.zip_time_pairs(throttlePedal_list)
        steering_vs_time = self.zip_time_pairs(steeringWheel_list)

        # if len(self.obj_id_list) == 1:
        if self.empty_flag:
            # report_dict = {
            #     "name": "安全性",
            #     "weight": f"{self.weight * 100:.2f}%",
            #     "weightDistribution": weight_distribution,
            #     "score": 80,
            #     "level": "良好",
            #
            #     'collisionRisk': self.collisionRisk,
            #     "description1": safe_description1,
            #     "description2": safe_description2,
            #     "noObjectCar": True,
            #
            #     "safeTime": time_dict,
            #     "safeDistance": distance_dict,
            #     "safeAcceleration": acceleration_dict,
            #     "safeProbability": probability_dict
            #
            # }

            self.weight_dict = self.normalize_dict_values(self.weight_dict)
            self.weight_type_dict = self.normalize_dict_values(self.weight_type_dict)

            score_safe, score_type_dict, score_metric_dict = self.safe_score_new()

            # format score
            score_safe = int(score_safe) if int(score_safe) == score_safe else round(score_safe, 2)
            grade_safe = score_grade(score_safe)

            report_dict = {
                "name": "安全性",
                "weight": f"{self.weight * 100:.2f}%",
                "score": score_safe,
                "level": grade_safe,
                'collisionRisk': self.collisionRisk,
                "noObjectCar": True,
                "weightDistribution": self._get_weight_distribution("safe")
            }

            # get weight distribution

            safe_description1 = "算法在无目标车情况下安全性表现良好,无碰撞风险;"
            safe_description2 = "安全性在无目标车情况下表现良好。"
            report_dict["description1"] = safe_description1
            report_dict["description2"] = safe_description2

            type_details_dict = {}

            for type in self.type_list:

                score_type = score_type_dict[type]
                grade_type = score_grade(score_type)

                type_dict = {
                    "name":self.type_name_dict[type],
                    "score": score_type,
                    "level": grade_type,
                    "description1": "无目标车数据可计算",
                    "description2": "表现良好",
                }

                builtin_graph_dict = {}
                custom_graph_dict = {}

                type_dict_indexes = {}
                for metric in self.metric_dict[type]:
                    type_dict_indexes[metric] = {
                        # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
                        "name": f"{self.name_dict[metric]}",
                        "meaning": f"{self.name_dict[metric]}",
                        "score": 80,
                        "extremum": "-",
                        # "range": f"[{self.optimal1_dict['TTC']}, inf)",
                        "rate": "-"
                    }
                    if metric in self.bulitin_metric_list:
                        if self.kind1_dict[metric] == -1:
                            type_dict_indexes[metric]["range"] = f"[0, {self.optimal1_dict[metric]}]"
                        elif self.kind1_dict[metric] == 1:
                            type_dict_indexes[metric]["range"] = f"[{self.optimal1_dict[metric]}, inf)"
                        elif self.kind1_dict[metric] == 0:
                            type_dict_indexes[metric][
                                "range"] = f"[{self.optimal1_dict[metric] * self.multiple_dict[metric][0]}, {self.optimal1_dict[metric] * self.multiple_dict[metric][1]}]"
                    else:
                        if self.custom_param_dict[metric]['kind'][0] == -1:
                            type_dict_indexes[metric][
                                "range"] = f"[0, {self.custom_param_dict[metric]['optimal'][0]}]"
                        elif self.custom_param_dict[metric]['kind'][0] == 1:
                            type_dict_indexes[metric][
                                "range"] = f"[{self.custom_param_dict[metric]['optimal'][0]}, inf)"
                        elif self.custom_param_dict[metric]['kind'][0] == 0:
                            type_dict_indexes[metric][
                                "range"] = f"[{self.custom_param_dict[metric]['optimal'][0] * self.custom_param_dict[metric]['multiple'][0][0]}, {self.custom_param_dict[metric]['optimal'][0] * self.custom_param_dict[metric]['multiple'][0][1]}]"

                type_dict["indexes"] = type_dict_indexes
                type_dict["builtin"] = builtin_graph_dict
                type_dict["custom"] = custom_graph_dict
                type_details_dict[type] = type_dict

            report_dict["details"] = type_details_dict
            report_dict['commonData'] = {
                "per": {
                    "name": "脚刹/油门踏板开度(百分比)",
                    "legend": ["刹车踏板开度", "油门踏板开度"],
                    "data": [brake_vs_time, throttle_vs_time]
                },
                "ang": {
                    "name": "方向盘转角(角度°)",
                    "data": steering_vs_time
                }
                # "spe": {
                #     "name": "速度(km/h)",
                #     "legend": ["自车速度", "目标车速度", "自车与目标车相对速度"],
                #     "data": [ego_speed_vs_time, obj_speed_vs_time, rel_speed_vs_time]
                #
                # },
                # "acc": {
                #     "name": "加速度(m/s²)",
                #     "legend": ["横向加速度", "纵向加速度"],
                #     "data": [lat_acc_vs_time, lon_acc_vs_time]
                #
                # },
                # "dis": {
                #     "name": "前车距离(m)",
                #     "data": distance_vs_time
                # }
            }

            return report_dict

        # report_dict = {
        #     "name": "安全性",
        #     "weight": f"{self.weight * 100:.2f}%",
        #     "weightDistribution": weight_distribution,
        #     "score": score_safe,
        #     "level": grade_safe,
        #     'collisionRisk': self.collisionRisk,
        #     "description1": safe_description1,
        #     "description2": safe_description2,
        #     "noObjectCar": False,
        #
        #     "safeTime": time_dict,
        #     "safeDistance": distance_dict,
        #     "safeAcceleration": acceleration_dict,
        #     "safeProbability": probability_dict,
        #
        #     "speData": [ego_speed_vs_time, obj_speed_vs_time, rel_speed_vs_time],
        #     "accData": [lat_acc_vs_time, lon_acc_vs_time],
        #
        # }
        report_dict = {
            "name": "安全性",
            "weight": f"{self.weight * 100:.2f}%",
            'collisionRisk': self.collisionRisk,
            "noObjectCar": False,

        }

        upper_limit = 40
        times_upper = 2
        len_time = len(self.time_list)
        duration = self.time_list[-1]
        score_safe, score_type_dict, score_metric_dict = self.safe_score_new()

        # format score
        score_safe = int(score_safe) if int(score_safe) == score_safe else round(score_safe, 2)
        grade_safe = score_grade(score_safe)
        report_dict["score"] = score_safe
        report_dict["level"] = grade_safe

        # get weight distribution
        report_dict['weightDistribution'] = self._get_weight_distribution("safe")

        # speData
        ego_speed_list = self.ego_df['v'].values.tolist()
        ego_speed_vs_time = self.zip_time_pairs(ego_speed_list)

        obj_id = 2
        obj_df = self.df[self.df['playerId'] == obj_id]
        obj_speed_list = obj_df['v'].values.tolist()
        obj_speed_vs_time = self.zip_time_pairs(obj_speed_list)

        rel_speed_list = obj_df['vrel_projection_in_dist'].values.tolist()
        rel_speed_vs_time = self.zip_time_pairs(rel_speed_list)

        # accData
        lon_acc_list = self.ego_df['lon_acc'].values.tolist()
        lon_acc_vs_time = self.zip_time_pairs(lon_acc_list)

        lat_acc_list = self.ego_df['lat_acc'].values.tolist()
        lat_acc_vs_time = self.zip_time_pairs(lat_acc_list)

        # disData
        distance_list = obj_df['dist'].values.tolist()
        distance_vs_time = self.zip_time_pairs(distance_list)

        # report_dict["speData"] = [ego_speed_vs_time, obj_speed_vs_time, rel_speed_vs_time]
        # report_dict["accData"] = [lat_acc_vs_time, lon_acc_vs_time]
        # report_dict["disData"] = distance_vs_time

        # ttcData
        ttc_list = obj_df['TTC'].values.tolist()
        ttc_list = [9999 if math.isinf(x) else x for x in ttc_list]
        ttc_vs_time = self.zip_time_pairs(ttc_list)

        # for description
        good_type_list = []
        bad_type_list = []

        # good_metric_list = []
        # bad_metric_list = []

        # str for description
        # str_over_optimal = ""
        safe_over_optimal_dict = {}
        type_details_dict = {}

        for type in self.type_list:
            if type == "safeTime":
                time_dict = {
                    "name": self.type_name_dict[type],
                }

                builtin_graph_dict = {}
                custom_graph_dict = {}

                # ------------------------------
                bad_type_list.append(type) if score_type_dict[type] < 80 else good_type_list.append(type)

                # time metric dict
                score_time = score_type_dict['safeTime']
                grade_time = score_grade(score_time)
                time_dict["score"] = score_time
                time_dict["level"] = grade_time

                # safeTime description
                unsafe_time_type_list = [key for key, value in score_metric_dict.items() if
                                         (key in self.metric_dict[type]) and (value < 80)]
                safe_time_type_list = [key for key, value in score_metric_dict.items() if
                                       (key in self.metric_dict[type]) and (value >= 80)]

                str_time_over_optimal = ''
                str_time_over_optimal_time = ''
                if not unsafe_time_type_list:
                    str_safe_time_type = string_concatenate(safe_time_type_list)
                    time_description1 = f'{str_safe_time_type}指标均表现良好'
                    time_description2 = f'{str_safe_time_type}指标均在合理范围内,表现良好'
                else:
                    for metric in unsafe_time_type_list:
                        if metric in self.bulitin_metric_list:
                            metric_over_optimal = ((self.optimal1_dict[metric] - self.most_dangerous[metric]) /
                                                   self.optimal1_dict[metric]) * 100
                            str_time_over_optimal += f'{self.name_dict[metric]}极值超过合理范围{metric_over_optimal:.2f}%,'

                            metric_over_optimal_time = (1 - self.pass_percent[metric]) * duration * self.df[
                                metric].count() / len_time
                            str_time_over_optimal_time += f'{metric}指标共有{metric_over_optimal_time:.2f}秒超出合理范围;'

                        else:
                            metric_over_optimal = ((self.custom_param_dict[metric]['optimal'][0] -
                                                    self.custom_data[metric]["value"][0]) /
                                                   self.custom_param_dict[metric]['optimal'][0]) * 100
                            str_time_over_optimal += f'{self.name_dict[metric]}极值超过合理范围{metric_over_optimal:.2f}%;'

                    str_time_over_optimal = str_time_over_optimal[:-1]
                    str_time_over_optimal_time = str_time_over_optimal_time[:-1]

                    str_safe_time_type = string_concatenate(safe_time_type_list)
                    str_unsafe_time_type = string_concatenate(unsafe_time_type_list)

                    if not safe_time_type_list:
                        time_description1 = f"{str_unsafe_time_type}指标表现不佳,{str_time_over_optimal}"
                        time_description2 = f"{str_time_over_optimal_time},算法应加强在该时间段对跟车距离的控制"
                    else:
                        time_description1 = f"{str_safe_time_type}指标表现良好,{str_unsafe_time_type}指标表现不佳,{str_time_over_optimal}"
                        time_description2 = f"{str_safe_time_type}指标均在合理范围内,表现良好,{str_time_over_optimal_time},算法应加强在该时间段对跟车距离的控制"

                time_dict["description1"] = replace_key_with_value(time_description1, self.name_dict)
                time_dict["description2"] = replace_key_with_value(time_description2, self.name_dict)

                safe_over_optimal_dict['safeTime'] = str_time_over_optimal_time

                # safeTime extremum
                time_dict_indexes = {}

                if "TTC" in self.metric_list:
                    self.unsafe_time_ttc_df_statistic(obj_df)

                if "MTTC" in self.metric_list:
                    self.unsafe_time_mttc_df_statistic(obj_df)

                if "THW" in self.metric_list:
                    self.unsafe_time_thw_df_statistic(obj_df)

                unsafe_time_df = self.unsafe_time_df.copy()
                unsafe_time_df['type'] = "origin"
                unsafe_time_slices = unsafe_time_df.to_dict('records')

                for metric in self.metric_dict[type]:
                    if metric in self.bulitin_metric_list:
                        metric_extremum = upper_limit if self.most_dangerous[metric] > upper_limit else \
                            self.most_dangerous[
                                metric]

                        metric_list = obj_df[metric].values.tolist()
                        metric_vs_time = self.zip_time_pairs(metric_list)

                        unsafe_metric_df = self.unsafe_time_df.copy()
                        unsafe_metric_df.loc[unsafe_metric_df['type'] != metric, 'type'] = "origin"
                        unsafe_metric_df.loc[unsafe_metric_df['type'] == metric, 'type'] = "time"
                        unsafe_metric_slices = unsafe_metric_df.to_dict('records')

                        time_dict_indexes[metric] = {
                            # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
                            "name": f"{self.name_dict[metric]}",
                            "meaning": f"{self.name_dict[metric]}",
                            "score": score_metric_dict[metric],
                            "extremum": f'{metric_extremum:.2f}',
                            "range": f"[{self.optimal1_dict[metric]}, inf)",
                            "rate": str(
                                int(self.pass_percent[metric] * 100) if int(self.pass_percent[metric] * 100) ==
                                                                        self.pass_percent[metric] * 100 else round(
                                    self.pass_percent[metric] * 100, 2)) + '%'
                        }

                        if metric != 'TTC':  # TTC in commonData
                            metric_data = {
                                # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
                                "name": f"{self.name_dict[metric]}",
                                "data": metric_vs_time,
                                "range": f"[{self.optimal1_dict[metric]}, inf)",
                                # "markLine": unsafe_metric_slices,
                                # "markLine2": [self.optimal1_dict[metric]]
                            }
                            builtin_graph_dict[metric] = metric_data

                    else:
                        value = self.custom_data[metric]["value"][0]
                        metric_extremum = upper_limit if value > upper_limit else value

                        time_dict_indexes[metric] = {
                            # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
                            "name": f"{self.name_dict[metric]}",
                            "meaning": f"{self.name_dict[metric]}",
                            "score": score_metric_dict[metric],
                            "extremum": f'{metric_extremum:.2f}',
                            # "range": f"[{self.optimal1_dict[metric]}, inf)",
                            "rate": "-"
                        }

                        if self.custom_param_dict[metric]['kind'][0] == -1:
                            time_dict_indexes[metric][
                                "range"] = f"[0, {self.custom_param_dict[metric]['optimal'][0]}]"
                        elif self.custom_param_dict[metric]['kind'][0] == 1:
                            time_dict_indexes[metric][
                                "range"] = f"[{self.custom_param_dict[metric]['optimal'][0]}, inf)"
                        elif self.custom_param_dict[metric]['kind'][0] == 0:
                            time_dict_indexes[metric][
                                "range"] = f"[{self.custom_param_dict[metric]['optimal'][0] * self.custom_param_dict[metric]['multiple'][0][0]}, {self.custom_param_dict[metric]['optimal'][0] * self.custom_param_dict[metric]['multiple'][0][1]}]"

                        metric_data = self.custom_data[metric]["reportData"]
                        custom_graph_dict[metric] = metric_data

                time_dict["indexes"] = time_dict_indexes
                time_dict["builtin"] = builtin_graph_dict
                time_dict["custom"] = custom_graph_dict

                # time_dict["disData"] = distance_vs_time
                # time_dict["disMarkLine"] = unsafe_time_slices

                # time_dict = {
                #     "score": score_time,
                #     "level": grade_time,
                #     "description1": time_description1,
                #     "description2": time_description2,
                #     "indexes": time_dict_indexes,
                #
                #     "disData": distance_vs_time,
                #     "disMarkLine": unsafe_time_slices,
                #
                #     "TTC": ttc_data,
                #     "MTTC": mttc_data,
                #     "THW": thw_data
                # }
                type_details_dict[type] = time_dict

            elif type == "safeDistance":
                distance_dict = {
                    "name": self.type_name_dict[type],
                }

                builtin_graph_dict = {}
                custom_graph_dict = {}

                bad_type_list.append(type) if score_type_dict[type] < 80 else good_type_list.append(type)

                # ------------------------------
                # distance metric dict
                score_distance = score_type_dict['safeDistance']
                grade_distance = score_grade(score_distance)
                distance_dict["score"] = score_distance
                distance_dict["level"] = grade_distance

                # safeDistance description
                unsafe_dist_type_list = [key for key, value in score_metric_dict.items() if
                                         (key in self.metric_dict[type]) and (value < 80)]
                safe_dist_type_list = [key for key, value in score_metric_dict.items() if
                                       (key in self.metric_dict[type]) and (value >= 80)]

                str_dist_over_optimal = ''
                str_dist_over_optimal_time = ''
                if not unsafe_dist_type_list:
                    str_safe_dist_type = string_concatenate(safe_dist_type_list)
                    distance_description1 = f"{str_safe_dist_type}指标均表现良好"
                    distance_description2 = f"{str_safe_dist_type}指标均在合理范围内,表现良好"
                else:
                    for metric in unsafe_dist_type_list:

                        if metric in self.bulitin_metric_list:
                            metric_over_optimal = ((self.optimal1_dict[metric] - self.most_dangerous[metric]) /
                                                   self.optimal1_dict[metric]) * 100
                            str_dist_over_optimal += f'{self.name_dict[metric]}极值超过合理范围{metric_over_optimal:.2f}%,'

                            metric_over_optimal_time = (1 - self.pass_percent[metric]) * duration * self.df[
                                metric].count() / len_time
                            str_dist_over_optimal_time += f'{metric}指标共有{metric_over_optimal_time:.2f}秒超出合理范围;'

                        else:
                            metric_over_optimal = ((self.custom_param_dict[metric]['optimal'][0] -
                                                    self.custom_data[metric]["value"][0]) /
                                                   self.custom_param_dict[metric]['optimal'][0]) * 100
                            str_dist_over_optimal += f'{self.name_dict[metric]}极值超过合理范围{metric_over_optimal:.2f}%;'

                    str_dist_over_optimal = str_dist_over_optimal[:-1]
                    str_dist_over_optimal_time = str_dist_over_optimal_time[:-1]

                    str_safe_dist_type = string_concatenate(safe_dist_type_list)
                    str_unsafe_dist_type = string_concatenate(unsafe_dist_type_list)

                    if not safe_dist_type_list:
                        distance_description1 = f"{str_unsafe_dist_type}指标表现不佳,{str_dist_over_optimal}"
                        distance_description2 = f"{str_dist_over_optimal_time}"
                    else:
                        distance_description1 = f"{str_safe_dist_type}指标表现良好,{str_unsafe_dist_type}指标表现不佳,{str_dist_over_optimal}"
                        distance_description2 = f"{str_safe_dist_type}指标均在合理范围内,表现良好,{str_dist_over_optimal_time}"

                distance_dict["description1"] = replace_key_with_value(distance_description1, self.name_dict)
                distance_dict["description2"] = replace_key_with_value(distance_description2, self.name_dict)

                safe_over_optimal_dict['safeDistance'] = str_dist_over_optimal_time

                # safeDistance extremum
                distance_dict_indexes = {}

                if "LonSD" in self.metric_list:
                    self.unsafe_distance_lonsd_df_statistic(obj_df)

                if "LatSD" in self.metric_list:
                    self.unsafe_distance_latsd_df_statistic(obj_df)

                unsafe_dist_df = self.unsafe_dist_df.copy()
                unsafe_dist_df['type'] = "origin"
                # unsafe_dist_slices = unsafe_dist_df.to_dict('records')

                for metric in self.metric_dict[type]:
                    if metric in self.bulitin_metric_list:
                        metric_extremum = upper_limit if self.most_dangerous[metric] > upper_limit else \
                            self.most_dangerous[metric]

                        metric_list = obj_df[metric].values.tolist()
                        metric_vs_time = self.zip_time_pairs(metric_list)

                        unsafe_metric_df = self.unsafe_dist_df.copy().dropna()
                        unsafe_metric_df.loc[unsafe_metric_df['type'] != metric, 'type'] = "origin"
                        unsafe_metric_df.loc[unsafe_metric_df['type'] == metric, 'type'] = "distance"
                        unsafe_metric_slices = unsafe_metric_df.to_dict('records')

                        distance_dict_indexes[metric] = {
                            # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
                            "name": f"{self.name_dict[metric]}",
                            "meaning": f"{self.name_dict[metric]}",
                            "score": score_metric_dict[metric],
                            "extremum": f'{metric_extremum:.2f}',
                            "range": f"[{self.optimal1_dict[metric]}, inf)",
                            "rate": str(
                                int(self.pass_percent[metric] * 100) if int(self.pass_percent[metric] * 100) ==
                                                                        self.pass_percent[metric] * 100 else round(
                                    self.pass_percent[metric] * 100, 2)) + '%'
                        }

                        metric_data = {
                            # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
                            "name": f"{self.name_dict[metric]}",
                            "data": metric_vs_time,
                            "range": f"[{self.optimal1_dict[metric]}, inf)",
                            # "markLine": unsafe_metric_slices,
                            # "markLine2": [self.optimal1_dict[metric]]
                        }
                        builtin_graph_dict[metric] = metric_data

                    else:
                        value = self.custom_data[metric]["value"][0]
                        metric_extremum = upper_limit if value > upper_limit else value

                        distance_dict_indexes[metric] = {
                            # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
                            "name": f"{self.name_dict[metric]}",
                            "meaning": f"{self.name_dict[metric]}",
                            "score": score_metric_dict[metric],
                            "extremum": f'{metric_extremum:.2f}',
                            # "range": f"[{self.optimal1_dict[metric]}, inf)",
                            "rate": "-"
                        }

                        if self.custom_param_dict[metric]['kind'][0] == -1:
                            distance_dict_indexes[metric][
                                "range"] = f"[0, {self.custom_param_dict[metric]['optimal'][0]}]"
                        elif self.custom_param_dict[metric]['kind'][0] == 1:
                            distance_dict_indexes[metric][
                                "range"] = f"[{self.custom_param_dict[metric]['optimal'][0]}, inf)"
                        elif self.custom_param_dict[metric]['kind'][0] == 0:
                            distance_dict_indexes[metric][
                                "range"] = f"[{self.custom_param_dict[metric]['optimal'][0] * self.custom_param_dict[metric]['multiple'][0][0]}, {self.custom_param_dict[metric]['optimal'][0] * self.custom_param_dict[metric]['multiple'][0][1]}]"

                        metric_data = self.custom_data[metric]["reportData"]
                        custom_graph_dict[metric] = metric_data

                distance_dict["indexes"] = distance_dict_indexes
                distance_dict["builtin"] = builtin_graph_dict
                distance_dict["custom"] = custom_graph_dict
                type_details_dict[type] = distance_dict

                # distance_dict = {
                #     "score": score_distance,
                #     "level": grade_distance,
                #     "description1": distance_description1,
                #     "description2": distance_description2,
                #     "indexes": distance_dict_indexes,
                #
                #     "LonSD": lonsd_data,
                #     "LatSD": latsd_data
                # }

            elif type == "safeAcceleration":
                acceleration_dict = {
                    "name": self.type_name_dict[type],
                }

                builtin_graph_dict = {}
                custom_graph_dict = {}

                bad_type_list.append(type) if score_type_dict[type] < 80 else good_type_list.append(type)

                # ------------------------------
                # acceleration metric dict
                score_acceleration = score_type_dict['safeAcceleration']
                grade_acceleration = score_grade(score_acceleration)
                acceleration_dict["score"] = score_acceleration
                acceleration_dict["level"] = grade_acceleration

                # safeAcceleration data for graph
                lat_dist_list = obj_df['lat_d'].values.tolist()
                lat_dist_vs_time = self.zip_time_pairs(lat_dist_list)
                lon_dist_list = obj_df['lon_d'].values.tolist()
                lon_dist_vs_time = self.zip_time_pairs(lon_dist_list)

                # safeAcceleration description
                unsafe_acce_type_list = [key for key, value in score_metric_dict.items() if
                                         (key in self.metric_dict[type]) and (value < 80)]
                safe_acce_type_list = [key for key, value in score_metric_dict.items() if
                                       (key in self.metric_dict[type]) and (value >= 80)]

                str_acce_over_optimal = ''
                str_acce_over_optimal_time = ''
                if not unsafe_acce_type_list:
                    str_safe_acce_type = string_concatenate(safe_acce_type_list)
                    acceleration_description1 = f"{str_safe_acce_type}指标均表现良好"
                    acceleration_description2 = f"{str_safe_acce_type}指标均在合理范围内,表现良好"
                else:
                    for metric in unsafe_acce_type_list:
                        if metric in self.bulitin_metric_list:
                            metric_over_optimal = ((self.optimal1_dict[metric] - self.most_dangerous[metric]) /
                                                   self.optimal1_dict[metric]) * 100
                            str_acce_over_optimal += f'{self.name_dict[metric]}极值超过合理范围{metric_over_optimal:.2f}%,'

                            metric_over_optimal_time = (1 - self.pass_percent[metric]) * duration * self.df[
                                metric].count() / len_time
                            str_acce_over_optimal_time += f'{metric}指标共有{metric_over_optimal_time:.2f}秒超出合理范围;'

                        else:
                            metric_over_optimal = ((self.custom_param_dict[metric]['optimal'][0] -
                                                    self.custom_data[metric]["value"][0]) /
                                                   self.custom_param_dict[metric]['optimal'][0]) * 100
                            str_acce_over_optimal += f'{self.name_dict[metric]}极值超过合理范围{metric_over_optimal:.2f}%;'

                    str_acce_over_optimal = str_acce_over_optimal[:-1]
                    str_acce_over_optimal_time = str_acce_over_optimal_time[:-1]

                    str_safe_acce_type = string_concatenate(safe_acce_type_list)
                    str_unsafe_acce_type = string_concatenate(unsafe_acce_type_list)

                    if not safe_acce_type_list:
                        acceleration_description1 = f"{str_unsafe_acce_type}指标表现不佳,{str_acce_over_optimal}"
                        acceleration_description2 = f"{str_acce_over_optimal_time}"
                    else:
                        acceleration_description1 = f"{str_safe_acce_type}指标表现良好,{str_unsafe_acce_type}指标表现不佳,{str_acce_over_optimal}"
                        acceleration_description2 = f"{str_safe_acce_type}指标均在合理范围内,表现良好,{str_acce_over_optimal_time}"

                acceleration_dict["description1"] = replace_key_with_value(acceleration_description1, self.name_dict)
                acceleration_dict["description2"] = replace_key_with_value(acceleration_description2, self.name_dict)

                safe_over_optimal_dict['safeAcceleration'] = str_acce_over_optimal_time

                # safeAcceleration extremum
                acceleration_dict_indexes = {}

                if "DRAC" in self.metric_list:
                    self.unsafe_acceleration_drac_df_statistic(obj_df)

                if "BTN" in self.metric_list:
                    self.unsafe_acceleration_btn_df_statistic(obj_df)

                if "STN" in self.metric_list:
                    self.unsafe_acceleration_stn_df_statistic(obj_df)

                unsafe_acce_drac_df = self.unsafe_acce_drac_df.copy().dropna()
                unsafe_acce_drac_df['type'] = "origin"
                unsafe_acce_drac_slices = unsafe_acce_drac_df.to_dict('records')

                unsafe_acce_xtn_df = self.unsafe_acce_xtn_df.copy()
                unsafe_acce_xtn_df['type'] = "origin"
                unsafe_acce_xtn_slices = unsafe_acce_xtn_df.to_dict('records')

                for metric in self.metric_dict[type]:
                    if metric in self.bulitin_metric_list:
                        metric_extremum = upper_limit if self.most_dangerous[metric] > upper_limit else \
                            self.most_dangerous[metric]

                        metric_list = obj_df[metric].values.tolist()
                        metric_vs_time = self.zip_time_pairs(metric_list)

                        if metric == "DRAC":
                            unsafe_metric_df = self.unsafe_acce_drac_df.copy().dropna()
                        else:
                            unsafe_metric_df = self.unsafe_acce_xtn_df.copy().dropna()

                        unsafe_metric_df.loc[unsafe_metric_df['type'] != metric, 'type'] = "origin"
                        unsafe_metric_df.loc[unsafe_metric_df['type'] == metric, 'type'] = "time"
                        unsafe_metric_slices = unsafe_metric_df.to_dict('records')

                        acceleration_dict_indexes[metric] = {
                            # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
                            "name": f"{self.name_dict[metric]}",
                            "meaning": f"{self.name_dict[metric]}",
                            "score": score_metric_dict[metric],
                            "extremum": f'{metric_extremum:.2f}',
                            "range": f"[0, {self.optimal1_dict[metric]}]",
                            "rate": str(
                                int(self.pass_percent[metric] * 100) if int(self.pass_percent[metric] * 100) ==
                                                                        self.pass_percent[metric] * 100 else round(
                                    self.pass_percent[metric] * 100, 2)) + '%'
                        }

                        metric_data = {
                            # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
                            "name": f"{self.name_dict[metric]}",
                            "data": metric_vs_time,
                            "range": f"[0, {self.optimal1_dict[metric]}]",
                            # "markLine": unsafe_metric_slices,
                            # "markLine2": [self.optimal1_dict[metric]]
                        }
                        builtin_graph_dict[metric] = metric_data

                    else:
                        value = self.custom_data[metric]["value"][0]
                        metric_extremum = upper_limit if value > upper_limit else value

                        acceleration_dict_indexes[metric] = {
                            # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
                            "name": f"{self.name_dict[metric]}",
                            "meaning": f"{self.name_dict[metric]}",
                            "score": score_metric_dict[metric],
                            "extremum": f'{metric_extremum:.2f}',
                            # "range": f"[{self.optimal1_dict[metric]}, inf)",
                            "rate": "-"
                        }

                        if self.custom_param_dict[metric]['kind'][0] == -1:
                            acceleration_dict_indexes[metric][
                                "range"] = f"[0, {self.custom_param_dict[metric]['optimal'][0]}]"
                        elif self.custom_param_dict[metric]['kind'][0] == 1:
                            acceleration_dict_indexes[metric][
                                "range"] = f"[{self.custom_param_dict[metric]['optimal'][0]}, inf)"
                        elif self.custom_param_dict[metric]['kind'][0] == 0:
                            acceleration_dict_indexes[metric][
                                "range"] = f"[{self.custom_param_dict[metric]['optimal'][0] * self.custom_param_dict[metric]['multiple'][0][0]}, {self.custom_param_dict[metric]['optimal'][0] * self.custom_param_dict[metric]['multiple'][0][1]}]"

                        metric_data = self.custom_data[metric]["reportData"]
                        custom_graph_dict[metric] = metric_data

                acceleration_dict["indexes"] = acceleration_dict_indexes
                acceleration_dict["builtin"] = builtin_graph_dict
                acceleration_dict["custom"] = custom_graph_dict
                # acceleration_dict["disData"] = distance_vs_time
                # acceleration_dict["disMarkLine"] = unsafe_acce_drac_slices
                # acceleration_dict["dis2Data"] = [lat_dist_vs_time, lon_dist_vs_time]
                # acceleration_dict["dis2MarkLine"] = unsafe_acce_xtn_slices

                type_details_dict[type] = acceleration_dict

                # acceleration_dict = {
                #     "score": score_acceleration,
                #     "level": grade_acceleration,
                #     "description1": acceleration_description1,
                #     "description2": acceleration_description2,
                #     "indexes": acceleration_dict_indexes,
                #
                #     "disData": distance_vs_time,
                #     "disMarkLine": unsafe_acce_drac_slices,
                #
                #     "dis2Data": [lat_dist_vs_time, lon_dist_vs_time],
                #     "dis2MarkLine": unsafe_acce_xtn_slices,
                #
                #     "DRAC": drac_data,
                #     "BTN": btn_data,
                #     "STN": stn_data
                # }

            elif type == "safeProbability":
                probability_dict = {
                    "name": self.type_name_dict[type],
                }

                builtin_graph_dict = {}
                custom_graph_dict = {}

                bad_type_list.append(type) if score_type_dict[type] < 80 else good_type_list.append(type)

                # ------------------------------
                # probability metric dict
                score_probability = score_type_dict['safeProbability']
                grade_probability = score_grade(score_probability)
                probability_dict["score"] = score_probability
                probability_dict["level"] = grade_probability

                # safeProbability description
                unsafe_prob_type_list = [key for key, value in score_metric_dict.items() if
                                         (key in self.metric_dict[type]) and (value < 80)]

                safe_prob_type_list = [key for key, value in score_metric_dict.items() if
                                       (key in self.metric_dict[type]) and (value >= 80)]

                str_prob_over_optimal = ''
                str_prob_over_optimal_time = ''
                if not unsafe_prob_type_list:
                    str_safe_prob_type = string_concatenate(safe_prob_type_list)
                    probability_description1 = f"{str_safe_prob_type}指标均表现良好"
                    probability_description2 = f"{str_safe_prob_type}指标均在合理范围内,表现良好"
                else:
                    for metric in unsafe_prob_type_list:
                        if metric in self.bulitin_metric_list:
                            metric_over_optimal = ((self.optimal1_dict[metric] - self.most_dangerous[metric]) /
                                                   self.optimal1_dict[metric]) * 100
                            str_prob_over_optimal += f'{self.name_dict[metric]}极值超过合理范围{metric_over_optimal:.2f}%,'

                            metric_over_optimal_time = (1 - self.pass_percent[metric]) * duration * self.df[
                                metric].count() / len_time
                            str_prob_over_optimal_time += f'{metric}指标共有{metric_over_optimal_time:.2f}秒超出合理范围;'

                        else:
                            metric_over_optimal = ((self.custom_param_dict[metric]['optimal'][0] -
                                                    self.custom_data[metric]["value"][0]) /
                                                   self.custom_param_dict[metric]['optimal'][0]) * 100
                            str_prob_over_optimal += f'{self.name_dict[metric]}极值超过合理范围{metric_over_optimal:.2f}%;'

                    str_prob_over_optimal = str_prob_over_optimal[:-1]
                    str_prob_over_optimal_time = str_prob_over_optimal_time[:-1]

                    str_safe_prob_type = string_concatenate(safe_prob_type_list)
                    str_unsafe_prob_type = string_concatenate(unsafe_prob_type_list)

                    if not safe_prob_type_list:
                        probability_description1 = f"{str_unsafe_prob_type}指标表现不佳,{str_prob_over_optimal}"
                        probability_description2 = f"{str_prob_over_optimal_time}"
                    else:
                        probability_description1 = f"{str_safe_prob_type}指标表现良好,{str_unsafe_prob_type}指标表现不佳,{str_prob_over_optimal}"
                        probability_description2 = f"{str_safe_prob_type}指标均在合理范围内,表现良好,{str_prob_over_optimal_time}"

                probability_dict["description1"] = replace_key_with_value(probability_description1, self.name_dict)
                probability_dict["description2"] = replace_key_with_value(probability_description2, self.name_dict)

                safe_over_optimal_dict['safeProbability'] = str_prob_over_optimal_time

                # safeProbability extremum
                probability_dict_indexes = {}

                if "collisionRisk" in self.metric_list:
                    self.unsafe_probability_cr_df_statistic(obj_df)

                if "collisionSeverity" in self.metric_list:
                    self.unsafe_probability_cs_df_statistic(obj_df)

                unsafe_prob_df = self.unsafe_prob_df.copy().dropna()
                unsafe_prob_df['type'] = "origin"
                unsafe_prob_slices = unsafe_prob_df.to_dict('records')

                for metric in self.metric_dict[type]:
                    if metric in self.bulitin_metric_list:
                        metric_extremum = upper_limit if self.most_dangerous[metric] > upper_limit else \
                            self.most_dangerous[
                                metric]

                        metric_list = obj_df[metric].values.tolist()
                        metric_vs_time = self.zip_time_pairs(metric_list)

                        unsafe_metric_df = self.unsafe_prob_df.copy().dropna()
                        unsafe_metric_df.loc[unsafe_metric_df['type'] != metric, 'type'] = "origin"
                        unsafe_metric_df.loc[unsafe_metric_df['type'] == metric, 'type'] = "time"
                        unsafe_metric_slices = unsafe_metric_df.to_dict('records')

                        probability_dict_indexes[metric] = {
                            # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
                            "name": f"{self.name_dict[metric]}",
                            "meaning": f"{self.name_dict[metric]}",
                            "score": score_metric_dict[metric],
                            "extremum": f'{metric_extremum:.2f}',
                            "range": f"[0, {self.optimal1_dict[metric]}]",
                            "rate": str(
                                int(self.pass_percent[metric] * 100) if int(self.pass_percent[metric] * 100) ==
                                                                        self.pass_percent[metric] * 100 else round(
                                    self.pass_percent[metric] * 100, 2)) + '%'
                        }

                        metric_data = {
                            # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
                            "name": f"{self.name_dict[metric]}",
                            "data": metric_vs_time,
                            "range": f"[0, {self.optimal1_dict[metric]}]",
                            # "markLine": unsafe_metric_slices,
                            # "markLine2": [self.optimal1_dict[metric]]
                        }
                        builtin_graph_dict[metric] = metric_data

                    else:
                        value = self.custom_data[metric]["value"][0]
                        metric_extremum = upper_limit if value > upper_limit else value

                        probability_dict_indexes[metric] = {
                            # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
                            "name": f"{self.name_dict[metric]}",
                            "meaning": f"{self.name_dict[metric]}",
                            "score": score_metric_dict[metric],
                            "extremum": f'{metric_extremum:.2f}',
                            # "range": f"[{self.optimal1_dict[metric]}, inf)",
                            "rate": "-"
                        }

                        if self.custom_param_dict[metric]['kind'][0] == -1:
                            probability_dict_indexes[metric][
                                "range"] = f"[0, {self.custom_param_dict[metric]['optimal'][0]}]"
                        elif self.custom_param_dict[metric]['kind'][0] == 1:
                            probability_dict_indexes[metric][
                                "range"] = f"[{self.custom_param_dict[metric]['optimal'][0]}, inf)"
                        elif self.custom_param_dict[metric]['kind'][0] == 0:
                            probability_dict_indexes[metric][
                                "range"] = f"[{self.custom_param_dict[metric]['optimal'][0] * self.custom_param_dict[metric]['multiple'][0][0]}, {self.custom_param_dict[metric]['optimal'][0] * self.custom_param_dict[metric]['multiple'][0][1]}]"

                        metric_data = self.custom_data[metric]["reportData"]
                        custom_graph_dict[metric] = metric_data

                probability_dict["indexes"] = probability_dict_indexes
                probability_dict["builtin"] = builtin_graph_dict
                probability_dict["custom"] = custom_graph_dict

                # probability_dict["ttcData"] = ttc_vs_time
                # probability_dict["ttcMarkLine"] = unsafe_prob_slices

                type_details_dict[type] = probability_dict

                # probability_dict = {
                #     "score": score_probability,
                #     "level": grade_probability,
                #     "description1": probability_description1,
                #     "description2": probability_description2,
                #     "indexes": probability_dict_indexes,
                #
                #     "ttcData": ttc_vs_time,
                #     "ttcMarkLine": unsafe_prob_slices,
                #
                #     "collisionRisk": cr_data,
                #     "collisionSeverity": cs_data
                # }

            else:
                bad_type_list.append(type) if score_type_dict[type] < 80 else good_type_list.append(type)

                type_dict = {
                    "name": self.type_name_dict[type],
                }

                builtin_graph_dict = {}
                custom_graph_dict = {}

                # get score and grade
                score_custom_type = score_type_dict[type]
                grade_custom_type = score_grade(score_custom_type)
                type_dict["score"] = score_custom_type
                type_dict["level"] = grade_custom_type

                # custom type description
                bad_custom_metric_list = [key for key, value in score_metric_dict.items() if
                                          (key in self.metric_dict[type]) and (value < 80)]
                good_custom_metric_list = [key for key, value in score_metric_dict.items() if
                                           (key in self.metric_dict[type]) and (value >= 80)]

                str_type_over_optimal = ''
                str_type_over_optimal_time = ''
                if not bad_custom_metric_list:
                    str_safe_type_type = string_concatenate(good_custom_metric_list)
                    type_description1 = f'{str_safe_type_type}指标均表现良好'
                    type_description2 = f'{str_safe_type_type}指标均在合理范围内,表现良好'
                else:
                    for metric in bad_custom_metric_list:
                        metric_over_optimal = ((self.custom_param_dict[metric]['optimal'][0] -
                                                self.custom_data[metric]["value"][0]) /
                                               self.custom_param_dict[metric]['optimal'][0]) * 100
                        str_type_over_optimal += f'{self.name_dict[metric]}极值超过合理范围{metric_over_optimal:.2f}%;'

                    str_type_over_optimal = str_type_over_optimal[:-1]
                    str_type_over_optimal_time = str_type_over_optimal_time[:-1]

                    str_safe_type_type = string_concatenate(good_custom_metric_list)
                    str_unsafe_type_type = string_concatenate(bad_custom_metric_list)

                    if not good_custom_metric_list:
                        type_description1 = f"{str_unsafe_type_type}指标表现不佳,{str_type_over_optimal}"
                        type_description2 = f"{str_type_over_optimal_time},算法应加强在该时间段对跟车距离的控制"
                    else:
                        type_description1 = f"{str_safe_type_type}指标表现良好,{str_unsafe_type_type}指标表现不佳,{str_type_over_optimal}"
                        type_description2 = f"{str_safe_type_type}指标均在合理范围内,表现良好,{str_type_over_optimal_time},算法应加强在该时间段对跟车距离的控制"

                type_dict["description1"] = replace_key_with_value(type_description1, self.name_dict)
                type_dict["description2"] = replace_key_with_value(type_description2, self.name_dict)

                type_dict_indexes = {}

                for metric in self.metric_dict[type]:

                    value = self.custom_data[metric]["value"][0]
                    metric_extremum = upper_limit if value > upper_limit else value

                    type_dict_indexes[metric] = {
                        # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
                        "name": f"{self.name_dict[metric]}",
                        "meaning": f"{self.name_dict[metric]}",
                        "score": score_metric_dict[metric],
                        "extremum": f'{metric_extremum:.2f}',
                        # "range": f"[{self.optimal1_dict[metric]}, inf)",
                        "rate": "-"
                    }

                    if self.custom_param_dict[metric]['kind'][0] == -1:
                        type_dict_indexes[metric][
                            "range"] = f"[0, {self.custom_param_dict[metric]['optimal'][0]}]"
                    elif self.custom_param_dict[metric]['kind'][0] == 1:
                        type_dict_indexes[metric][
                            "range"] = f"[{self.custom_param_dict[metric]['optimal'][0]}, inf)"
                    elif self.custom_param_dict[metric]['kind'][0] == 0:
                        type_dict_indexes[metric][
                            "range"] = f"[{self.custom_param_dict[metric]['optimal'][0] * self.custom_param_dict[metric]['multiple'][0][0]}, {self.custom_param_dict[metric]['optimal'][0] * self.custom_param_dict[metric]['multiple'][0][1]}]"

                    metric_data = self.custom_data[metric]["reportData"]
                    custom_graph_dict[metric] = metric_data

                type_dict["indexes"] = type_dict_indexes
                type_dict["builtin"] = builtin_graph_dict
                type_dict["custom"] = custom_graph_dict
                type_details_dict[type] = type_dict

        report_dict["details"] = type_details_dict
        # good_type_list = []
        # bad_type_list = []
        #
        # for type in self.type_list:
        #     bad_type_list.append(type) if any(i < 80 for key, i in score_metric_dict.items() if
        #                                       key in self.metric_dict[type]) else good_type_list.append(type)

        unsafe_time = self.df['unsafe_flag'].sum() * duration / len_time
        unsafe_time = round(unsafe_time, 2)

        safe_over_optimal = [value for key, value in safe_over_optimal_dict.items() if value]  # 解决空字符串多逗号问题
        str_safe_over_optimal = ';'.join(safe_over_optimal)

        if grade_safe == '优秀':
            safe_description1 = '车辆在本轮测试中无碰撞风险;'
        elif grade_safe == '良好':
            safe_description1 = '算法在本轮测试中的表现满足设计指标要求;'
        elif grade_safe == '一般':
            str_unsafe_type = string_concatenate(bad_type_list)
            safe_description1 = f'未满足设计指标要求。算法需要在{str_unsafe_type}上进一步优化。在仿真过程中共有{unsafe_time}s的时间处于危险状态。' \
                                f'在{str_unsafe_type}中,{str_safe_over_optimal};'
        elif grade_safe == '较差':
            str_unsafe_type = string_concatenate(bad_type_list)
            safe_description1 = f'未满足设计指标要求。算法在本轮测试中有碰撞风险,需要提高算法在{str_unsafe_type}上的表现。在{str_unsafe_type}中,' \
                                f'{str_safe_over_optimal};'

        if not bad_type_list:
            safe_description2 = '安全性在各个指标上的表现俱佳。'
        else:
            str_unsafe_type = string_concatenate(bad_type_list)
            safe_description2 = f"安全性在{str_unsafe_type}上存在严重风险,需要重点优化。"

        report_dict["description1"] = replace_key_with_value(safe_description1, self.name_dict)
        report_dict["description1"] = replace_key_with_value(safe_description1, self.type_name_dict)
        report_dict["description2"] = replace_key_with_value(safe_description2, self.type_name_dict)
        report_dict['commonData'] = {
            "per": {
                "name": "脚刹/油门踏板开度(百分比)",
                "legend": ["刹车踏板开度", "油门踏板开度"],
                "data": [brake_vs_time, throttle_vs_time]
            },
            "ang": {
                "name": "方向盘转角(角度°)",
                "data": steering_vs_time
            },
            "spe": {
                "name": "速度(km/h)",
                "legend": ["自车速度", "目标车速度", "自车与目标车相对速度"],
                "data": [ego_speed_vs_time, obj_speed_vs_time, rel_speed_vs_time]

            },
            "acc": {
                "name": "加速度(m/s²)",
                "legend": ["横向加速度", "纵向加速度"],
                "data": [lat_acc_vs_time, lon_acc_vs_time]

            },
            "dis": {
                "name": "前车距离(m)",
                "data": distance_vs_time
            },
            "ttc": {
                "name": 'TTC(m)',
                "data": ttc_vs_time
            }
        }

        # self.unsafe_df = pd.concat([self.unsafe_df, self.unsafe_time_df], ignore_index=True)
        # self.unsafe_df = pd.concat([self.unsafe_df, self.unsafe_dist_df], ignore_index=True)
        # self.unsafe_df = pd.concat([self.unsafe_df, self.unsafe_acce_drac_df], ignore_index=True)
        # self.unsafe_df = pd.concat([self.unsafe_df, self.unsafe_acce_xtn_df], ignore_index=True)
        # self.unsafe_df = pd.concat([self.unsafe_df, self.unsafe_prob_df], ignore_index=True)

        self.unsafe_df = pd.concat([self.unsafe_df, self.unsafe_time_df, self.unsafe_dist_df, self.unsafe_acce_drac_df,
                                    self.unsafe_acce_xtn_df, self.unsafe_prob_df], ignore_index=True)

        unsafe_df = self.unsafe_df.copy().dropna()
        unsafe_slices = unsafe_df.to_dict('records')
        report_dict["commonMarkLine"] = unsafe_slices

        # report_dict = {
        #     "name": "安全性",
        #     "weight": f"{self.weight * 100:.2f}%",
        #     "weightDistribution": weight_distribution,
        #     "score": score_safe,
        #     "level": grade_safe,
        #     'collisionRisk': self.collisionRisk,
        #     "description1": safe_description1,
        #     "description2": safe_description2,
        #     "noObjectCar": False,
        #
        #     "safeTime": time_dict,
        #     "safeDistance": distance_dict,
        #     "safeAcceleration": acceleration_dict,
        #     "safeProbability": probability_dict,
        #
        #     "speData": [ego_speed_vs_time, obj_speed_vs_time, rel_speed_vs_time],
        #     "accData": [lat_acc_vs_time, lon_acc_vs_time],
        #
        # }

        return report_dict

    def get_eval_data(self):
        if not self.eval_data.empty and not self.empty_flag:
            df = self.eval_data[
                ['simTime', 'simFrame', 'playerId', 'dist', 'lon_d', 'lat_d', 'lat_v_rel', 'lon_v_rel',
                 'vrel_projection_in_dist', 'arel_projection_in_dist', 'TTC', 'MTTC', 'THW', 'LonSD', 'LatSD',
                 'DRAC', 'BTN', 'STN', 'collisionSeverity', 'pr_death', 'collisionRisk']].copy()
        elif 'dist' in self.eval_data.columns:
            df = self.eval_data[
                ['simTime', 'simFrame', 'playerId', 'dist', 'lon_d', 'lat_d']].copy()
        else:
            df = self.eval_data.copy()

        return df