123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: yangzihao(yangzihao@china-icv.cn)
- @Data: 2023/11/27
- @Last Modified: 2023/11/27
- @Summary: Csv data process functions
- """
- import os
- import sys
- import numpy as np
- import pandas as pd
- from status_mapping import *
- from status_trigger import *
- # from status_mapping import acc_status_mapping, lka_status_mapping, ldw_status_mapping
- from data_quality import DataQuality, get_all_files, frame_loss_statistic
- from common import cal_velocity
- from data_info import CsvData
- import log
- class DataProcess(object):
- """
- The data process class. It is a template to get evaluation raw data and process the raw data.
- Attributes:
- """
- def __init__(self, data_path, config, case_name):
- # base info
- self.data_path = data_path
- self.case_name = case_name
- self.config = config
- # drive data
- self.ego_df = pd.DataFrame()
- self.object_df = pd.DataFrame()
- self.driver_ctrl_df = pd.DataFrame()
- self.vehicle_sys_df = pd.DataFrame()
- self.status_df = pd.DataFrame()
- # environment data
- self.lane_info_df = pd.DataFrame()
- self.road_mark_df = pd.DataFrame()
- self.road_pos_df = pd.DataFrame()
- self.traffic_light_df = pd.DataFrame()
- self.traffic_signal_df = pd.DataFrame()
- self.frame_rate = float()
- self.obj_data = {}
- self.ego_data = {}
- self.obj_id_list = {}
- self.car_info = {}
- self.report_info = {}
- self.driver_ctrl_data = {}
- self.status_trigger_dict = {}
- self._process()
- def _process(self):
- # self._signal_mapping()
- self._merge_csv()
- self._read_csv()
- self._invalid_detect()
- self._fill_missing_columns()
- # self._cal_frame_rate()
- # self._time_alignment()
- self.car_info = self._get_car_info(self.object_df)
- # self._compact_data()
- # self._abnormal_detect()
- # self._status_map(self.object_df)
- self._object_accel_get_from_egostate()
- self._object_df_process()
- self.status_trigger_dict = self._get_status_trigger_dict(self.status_df)
- self.report_info = self._get_report_info(self.obj_data[1])
- self.driver_ctrl_data = self._get_driver_ctrl_data(self.driver_ctrl_df)
- def _invalid_column_detect(self, df, csv_name): # head and tail detect
- """
- Detect the head of the csv whether begin with 0 or not.
- Returns:
- A dataframe, which 'time' column begin with 0.
- """
- logger = log.get_logger()
- for column in df.columns:
- if df[column].nunique() == 1:
- # if 9999.00 in df[column].values or "9999.00" in df[column].values:
- logger.warning(
- f"[case:{self.case_name}] SINGLE_CASE_EVAL: [{csv_name}] data '{column}' invalid WARNING!")
- def _csv_interpolate_by_frame(self, df):
- # df = pd.read_csv(input) # 读取CSV文件
- df['simFrame'] = pd.to_numeric(df['simFrame'], errors='coerce') # 转换simFrame列为数字类型
- df = df.sort_values(by='simFrame') # 根据simFrame列进行排序
- full_simFrame_series = pd.Series(range(df['simFrame'].min(), df['simFrame'].max() + 1)) # 构建一个包含连续simFrame的完整序列
- df = df.merge(full_simFrame_series.rename('simFrame'), how='right') # 使用merge方法将原始数据与完整序列合并,以填充缺失的simFrame行
- df = df.interpolate(method='linear') # 对其他列进行线性插值
- df['simFrame'] = df['simFrame'].astype(int) # 恢复simFrame列的数据类型为整数
- # df.to_csv(output, index=False) # 保存处理后的数据到新的CSV文件
- result = df.copy()
- return result
- def _cal_frame_rate(self):
- object_df = self.object_df.copy()
- ego_df = object_df[object_df['playerId'] == 1]
- df_filtered = ego_df[(ego_df['simTime'] > 0) & (ego_df['simTime'] <= 1)]
- self.frame_rate = df_filtered.shape[0]
- def _data_time_align(self, base_time, df):
- # 特判,如果输入的dataframe无数值,那么直接返回
- if df.empty:
- return df
- # FRAME_RATE = self.frame_rate
- time_diff = 1.0 / self.frame_rate
- # 创建一个新的递增的 simTime 序列,从 0 开始,步长为 0.01 (time_diff)
- new_sim_time_values = np.arange(0, base_time.max() + time_diff, time_diff)
- # 创建一个映射字典,将原始 simTime 值映射到新的 simTime 值
- original_to_new_sim_time = {original: round(new_sim_time_values[i], 2) for i, original in enumerate(base_time)}
- # 使用isin函数来过滤df,并筛选出simFrame大于0的数据
- filtered_df1 = df[df['simTime'].isin(base_time)]
- filtered_df2 = filtered_df1[filtered_df1['simFrame'] > 0]
- filtered_df = filtered_df2.reset_index(drop=True)
- # 使用映射字典来替换 filtered_df 中的 simTime 列
- filtered_df['simTime'] = filtered_df['simTime'].map(original_to_new_sim_time)
- # 同步更新simFrame
- filtered_df['simFrame'] = (filtered_df['simTime'] * self.frame_rate + 1).round().astype(int)
- return filtered_df
- @staticmethod
- def _speed_mps2kmph(df):
- df['speedX'] = df['speedX'] * 3.6 # m/s to km/h
- df['speedY'] = df['speedY'] * 3.6 # m/s to km/h
- df['speedZ'] = df['speedZ'] * 3.6 # m/s to km/h
- return df
- def _merge_csv(self):
- # read csv files
- df_ego = pd.read_csv(os.path.join(self.data_path, 'EgoState.csv')).drop_duplicates().dropna(how='all')
- df_object = pd.read_csv(os.path.join(self.data_path, 'ObjState.csv')).drop_duplicates() # 车辆行驶信息
- df_laneinfo = pd.read_csv(os.path.join(self.data_path, 'LaneInfo.csv')).drop_duplicates() # 曲率信息, 曲率加速度信息
- df_roadPos = pd.read_csv(os.path.join(self.data_path, 'RoadPos.csv')).drop_duplicates()
- df_status = pd.read_csv(os.path.join(self.data_path, 'VehState.csv'), index_col=False).drop_duplicates() # 状态机
- df_vehicleSys = pd.read_csv(os.path.join(self.data_path, 'VehicleSystems.csv')).drop_duplicates() # 车灯信息
- self.lane_info_df = df_laneinfo
- self.vehicle_sys_df = df_vehicleSys
- self.status_df = df_status
- self._invalid_detect_before_merge() # invalid detect
- # self._invalid_column_detect(df_laneinfo, 'LaneInfo.csv')
- # self._invalid_column_detect(df_object, 'ObjState.csv')
- # self._invalid_column_detect(df_vehicleSys, 'VehicleSystems.csv')
- # self._invalid_column_detect(df_status, 'VehState.csv')
- # df_ego['simTime'] = df_ego['simTime'].round(2) # EGO: km/h
- # df_object['simTime'] = df_object['simTime'].round(2) # OBJ: m/s, need unit conversion
- df_object = self._speed_mps2kmph(df_object) # m/s to km/h
- # base_time = df_ego['simTime'].unique()
- # df_ego = self._data_time_align(base_time, df_ego)
- # df_object = self._data_time_align(base_time, df_object)
- # df_laneinfo = self._data_time_align(base_time, df_laneinfo)
- # df_roadPos = self._data_time_align(base_time, df_roadPos)
- # df_status = self._data_time_align(base_time, df_status)
- # df_vehicleSys = self._data_time_align(base_time, df_vehicleSys)
- EGO_PLAYER_ID = 1
- # 合并 ego_df 和 obj_df
- df_ego['playerId'] = EGO_PLAYER_ID
- combined_df = pd.concat([df_object, df_ego]).drop_duplicates(subset=['simTime', 'simFrame', 'playerId'])
- df_object = combined_df.sort_values(
- by=['simTime', 'simFrame', 'playerId']).copy() # 按simTime/simFrame/playerId排序
- df_laneinfo['curvHor'] = df_laneinfo['curvHor'].round(3)
- df_laneinfo.rename(columns={"id": 'laneId'}, inplace=True)
- result = pd.merge(df_roadPos, df_laneinfo, how='inner', on=["simTime", "simFrame", "playerId", "laneId"])
- df_laneinfo_new = result[["simTime", "simFrame", "playerId", "curvHor", "curvHorDot"]].copy().drop_duplicates()
- # status mapping
- df_status = self._status_mapping(df_status)
- df_status = df_status[['simTime', 'ACC_status', 'Aeb_status', 'LKA_status', 'ICA_status', 'LDW_status',
- 'set_cruise_speed', 'set_headway_time']].copy()
- df_roadPos = df_roadPos[["simTime", "simFrame", "playerId", "laneOffset", "rollRel", "pitchRel"]].copy()
- # df merge
- df_vehicleSys = df_vehicleSys[['simTime', 'simFrame', 'lightMask', 'steering']].copy()
- merged_df = pd.merge(df_object, df_vehicleSys, on=["simTime", "simFrame"], how="left")
- merged_df1 = pd.merge(merged_df, df_laneinfo_new, on=["simTime", "simFrame", "playerId"], how="left")
- merged_df1 = pd.merge(merged_df1, df_roadPos, on=["simTime", "simFrame", "playerId"], how="left")
- merged_df2 = pd.merge_asof(merged_df1, df_status, on="simTime", direction='nearest')
- mg_df = merged_df2.drop_duplicates() # 去重
- mg_df = mg_df[mg_df.simFrame > 0].copy()
- mg_df.to_csv(os.path.join(self.data_path, 'merged_ObjState.csv'), index=False)
- print('The files are merged.')
- def _read_csv(self):
- """
- Read csv files to dataframe.
- Args:
- data_path: A str of the path of csv files
- Returns:
- No returns.
- """
- self.driver_ctrl_df = pd.read_csv(os.path.join(self.data_path, 'DriverCtrl.csv')).drop_duplicates()
- self.ego_df = pd.read_csv(os.path.join(self.data_path, 'EgoState.csv')).drop_duplicates()
- # self.object_df = pd.read_csv(os.path.join(self.data_path, 'ObjState.csv'))
- self.object_df = pd.read_csv(os.path.join(self.data_path, 'merged_ObjState.csv')).drop_duplicates(
- subset=['simTime', 'simFrame', 'playerId'])
- self.road_mark_df = pd.read_csv(os.path.join(self.data_path, 'RoadMark.csv')).drop_duplicates()
- self.road_pos_df = pd.read_csv(os.path.join(self.data_path, 'RoadPos.csv')).drop_duplicates()
- self.traffic_light_df = pd.read_csv(os.path.join(self.data_path, 'TrafficLight.csv')).drop_duplicates()
- self.traffic_signal_df = pd.read_csv(os.path.join(self.data_path, 'TrafficSign.csv')).drop_duplicates()
- def _invalid_detect_before_merge(self):
- # invalid detect
- self._invalid_column_detect(self.lane_info_df, 'LaneInfo.csv')
- # self._invalid_column_detect(self.object_df, 'ObjState.csv')
- self._invalid_column_detect(self.vehicle_sys_df, 'VehicleSystems.csv')
- self._invalid_column_detect(self.status_df, 'VehState.csv')
- def _invalid_detect(self):
- # invalid detect
- self._invalid_column_detect(self.ego_df, 'EgoState.csv')
- self._invalid_column_detect(self.object_df, 'ObjState.csv')
- self._invalid_column_detect(self.driver_ctrl_df, 'DriverCtrl.csv')
- self._invalid_column_detect(self.road_mark_df, 'RoadMark.csv')
- self._invalid_column_detect(self.road_pos_df, 'RoadPos.csv')
- self._invalid_column_detect(self.traffic_light_df, 'TrafficLight.csv')
- self._invalid_column_detect(self.traffic_signal_df, 'TrafficSign.csv')
- def _fill_missing_columns(self):
- pass
- def _time_alignment(self):
- base_time = self.ego_df['simTime'].unique()
- self.driver_ctrl_df = self._data_time_align(base_time, self.driver_ctrl_df)
- self.ego_df = self._data_time_align(base_time, self.ego_df)
- self.object_df = self._data_time_align(base_time, self.object_df)
- self.road_mark_df = self._data_time_align(base_time, self.road_mark_df)
- self.road_pos_df = self._data_time_align(base_time, self.road_pos_df)
- self.traffic_light_df = self._data_time_align(base_time, self.traffic_light_df)
- self.traffic_signal_df = self._data_time_align(base_time, self.traffic_signal_df)
- print("The data is aligned.")
- # interpolate data
- # self.driver_ctrl_df = self._csv_interpolate_by_frame(self.driver_ctrl_df)
- # self.ego_df = self._csv_interpolate_by_frame(self.ego_df)
- # self.object_df = self._csv_interpolate_by_frame(self.object_df)
- # self.road_mark_df = self._csv_interpolate_by_frame(self.road_mark_df)
- # self.road_pos_df = self._csv_interpolate_by_frame(self.road_pos_df)
- # self.traffic_light_df = self._csv_interpolate_by_frame(self.traffic_light_df)
- # self.traffic_signal_df = self._csv_interpolate_by_frame(self.traffic_signal_df)
- def _signal_mapping(self):
- pass
- # singal mapping
- # signal_json = r'./signal.json'
- # signal_dict = json2dict(signal_json)
- # df_objectstate = signal_name_map(df_objectstate, signal_dict, 'objectState')
- # df_roadmark = signal_name_map(df_roadmark, signal_dict, 'roadMark')
- # df_roadpos = signal_name_map(df_roadpos, signal_dict, 'roadPos')
- # df_trafficlight = signal_name_map(df_trafficlight, signal_dict, 'trafficLight')
- # df_trafficsignal = signal_name_map(df_trafficsignal, signal_dict, 'trafficSignal')
- # df_drivectrl = signal_name_map(df_drivectrl, signal_dict, 'driverCtrl')
- # df_laneinfo = signal_name_map(df_laneinfo, signal_dict, 'laneInfo')
- # df_status = signal_name_map(df_status, signal_dict, 'statusMachine')
- # df_vehiclesys = signal_name_map(df_vehiclesys, signal_dict, 'vehicleSys')
- def _get_car_info(self, df):
- """
- Args:
- df:
- Returns:
- """
- EGO_PLAYER_ID = 1
- first_row = df[df['playerId'] == EGO_PLAYER_ID].iloc[0].to_dict()
- # length = first_row['dimX']
- # width = first_row['dimY']
- # height = first_row['dimZ']
- # offset = first_row['offX']
- #
- # car_info = {
- # "length": length,
- # "width": width,
- # "height": height,
- # "offset": offset
- # }
- car_info = {
- "length": 4,
- "width": 2,
- "height": 2,
- "offset": 1
- }
- return car_info
- def _compact_data(self):
- """
- Extra necessary data from dataframes.
- Returns:
- """
- self.object_df = self.object_df[CsvData.OBJECT_INFO].copy()
- def _abnormal_detect(self): # head and tail detect
- """
- Detect the head of the csv whether begin with 0 or not.
- Returns:
- A dataframe, which 'time' column begin with 0.
- """
- pass
- def _unit_unified(self):
- pass
- def _object_accel_get_from_egostate(self):
- # 使用merge函数来合并两个DataFrame,基于simTime和playerId列
- # 我们使用how='left'来确保df_object中的所有行都被保留
- # 并且当在df_ego中找到匹配时,使用df_ego中的accel值
- merged = pd.merge(self.object_df, self.ego_df[['simTime', 'playerId', 'accelX']],
- on=['simTime', 'playerId'], how='left', suffixes=('', '_y'))
- merged = pd.merge(merged, self.ego_df[['simTime', 'playerId', 'accelY']],
- on=['simTime', 'playerId'], how='left', suffixes=('', '_y'))
- # 因为我们使用了suffixes参数来避免列名冲突(尽管在这个特定情况下可能不是必需的),
- # 但现在我们有一个名为'accel_y'的列,它包含了我们要更新的值
- # 如果不担心列名冲突,可以省略suffixes参数,并直接使用'accel'作为列名
- # 在这种情况下,你只需要选择正确的列来更新df_object
- # 更新df_object的accel列
- # 如果使用了suffixes参数,则使用'accel_y'
- # 如果没有使用suffixes参数,并且确信没有列名冲突,则直接使用'accel'
- self.object_df['accelX'] = merged['accelX_y'] # 如果使用了suffixes
- self.object_df['accelY'] = merged['accelY_y'] # 如果使用了suffixes
- def _object_df_process(self):
- """
- Process the data of object dataframe. Save the data groupby object_ID.
- Returns:
- No returns.
- """
- EGO_PLAYER_ID = 1
- data = self.object_df.copy()
- # calculate common parameters
- data['lat_v'] = data['speedY'] * 1
- data['lon_v'] = data['speedX'] * 1
- data['v'] = data.apply(lambda row: cal_velocity(row['lat_v'], row['lon_v']), axis=1)
- data['v'] = data['v'] # km/h
- # calculate acceleraton components
- data['lat_acc'] = data['accelY'] * 1
- data['lon_acc'] = data['accelX'] * 1
- data['accel'] = data.apply(lambda row: cal_velocity(row['lat_acc'], row['lon_acc']), axis=1)
- data = data.dropna(subset=['type'])
- data.reset_index(drop=True, inplace=True)
- self.object_df = data.copy()
- # calculate respective parameters
- for obj_id, obj_data in data.groupby("playerId"):
- self.obj_data[obj_id] = obj_data
- self.obj_data[obj_id]['time_diff'] = self.obj_data[obj_id]['simTime'].diff()
- self.obj_data[obj_id]['lat_acc_diff'] = self.obj_data[obj_id]['lat_acc'].diff()
- self.obj_data[obj_id]['lon_acc_diff'] = self.obj_data[obj_id]['lon_acc'].diff()
- self.obj_data[obj_id]['yawrate_diff'] = self.obj_data[obj_id]['speedH'].diff()
- self.obj_data[obj_id]['lat_acc_roc'] = self.obj_data[obj_id]['lat_acc_diff'] / self.obj_data[obj_id][
- 'time_diff']
- self.obj_data[obj_id]['lon_acc_roc'] = self.obj_data[obj_id]['lon_acc_diff'] / self.obj_data[obj_id][
- 'time_diff']
- self.obj_data[obj_id]['accelH'] = self.obj_data[obj_id]['yawrate_diff'] / self.obj_data[obj_id][
- 'time_diff']
- self.obj_data[obj_id]['lat_acc_roc'] = self.obj_data[obj_id]['lat_acc_roc'].replace([np.inf, -np.inf],
- [9999, -9999])
- self.obj_data[obj_id]['lon_acc_roc'] = self.obj_data[obj_id]['lon_acc_roc'].replace([np.inf, -np.inf],
- [9999, -9999])
- self.obj_data[obj_id]['accelH'] = self.obj_data[obj_id]['accelH'].replace([np.inf, -np.inf], [9999, -9999])
- # get object id list
- self.obj_id_list = list(self.obj_data.keys())
- self.ego_data = self.obj_data[EGO_PLAYER_ID]
- def _get_status_trigger_dict(self, status_df):
- # calculate ACC trigger time
- acc_trigger = ACCTrigger(status_df)
- acc_status_trigger = acc_trigger.ACC_active_time_statistics()
- # calculate LKA trigger time
- lka_trigger = LKATrigger(status_df)
- lka_status_trigger = lka_trigger.LKA_active_time_statistics()
- # calculate ICA trigger time
- ica_trigger = ICATrigger(status_df)
- ica_status_trigger = ica_trigger.ICA_active_time_statistics()
- # ica_status_trigger = {'ICA_active_time': []}
- return {
- "ACC": acc_status_trigger,
- "LKA": lka_status_trigger,
- "ICA": ica_status_trigger
- }
- def _mileage_cal(self, df1):
- """
- Calculate mileage of given df.
- Args:
- df1: A dataframe of driving data.
- Returns:
- mileage: A float of the mileage(meter) of the driving data.
- """
- df = df1.copy()
- # if 9999.00 in df['travelDist'].values or "9999.00" in df['travelDist'].values:
- if df['travelDist'].nunique() == 1:
- df['time_diff'] = df['simTime'].diff() # 计算时间间隔
- df['avg_speed'] = (df['v'] + df['v'].shift()) / 2 # 计算每个时间间隔的平均速度
- df['distance_increment'] = df['avg_speed'] * df['time_diff'] / 3.6 # 计算每个时间间隔的距离增量
- # 计算当前里程
- df['travelDist'] = df['distance_increment'].cumsum()
- df['travelDist'] = df['travelDist'].fillna(0)
- mile_start = df['travelDist'].iloc[0]
- mile_end = df['travelDist'].iloc[-1]
- mileage = round(mile_end - mile_start, 2)
- return mileage
- def _duration_cal(self, df):
- """
- Calculate duration of given df.
- Args:
- df: A dataframe of driving data.
- Returns:
- duration: A float of the duration(second) of the driving data.
- """
- time_start = df['simTime'].iloc[0]
- time_end = df['simTime'].iloc[-1]
- duration = time_end - time_start
- return duration
- def _get_report_info(self, df):
- """
- Get report infomation from dataframe.
- Args:
- df: A dataframe of driving data.
- Returns:
- report_info: A dict of report infomation.
- """
- mileage = self._mileage_cal(df)
- duration = self._duration_cal(df)
- report_info = {
- "mileage": mileage,
- "duration": duration
- }
- return report_info
- def _status_mapping(self, df):
- # df['Abpb_status'] = df['Abpb_status'].apply(lambda x: abpb_status_mapping(x))
- df['ACC_status'] = df['ACC_status'].apply(lambda x: acc_status_mapping(x))
- df['Aeb_status'] = df['Aeb_status'].apply(lambda x: aeb_status_mapping(x))
- # df['Awb_status'] = df['Awb_status'].apply(lambda x: ldw_status_mapping(x))
- # df['DOW_status'] = df['DOW_status'].apply(lambda x: ldw_status_mapping(x))
- # df['Eba_status'] = df['Eba_status'].apply(lambda x: ldw_status_mapping(x))
- # df['ELK_status'] = df['ELK_status'].apply(lambda x: ldw_status_mapping(x))
- # df['ESA_status'] = df['ESA_status'].apply(lambda x: ldw_status_mapping(x))
- # df['Fcw_status'] = df['Fcw_status'].apply(lambda x: ldw_status_mapping(x))
- df['ICA_status'] = df['ICA_status'].apply(lambda x: ica_status_mapping(x))
- # df['ISLC_status'] = df['ISLC_status'].apply(lambda x: ldw_status_mapping(x))
- # df['JA_status'] = df['JA_status'].apply(lambda x: ldw_status_mapping(x))
- df['LKA_status'] = df['LKA_status'].apply(lambda x: lka_status_mapping(x))
- df['LDW_status'] = df['LDW_status'].apply(lambda x: ldw_status_mapping(x))
- # df['NOA_status'] = df['NOA_status'].apply(lambda x: ldw_status_mapping(x))
- # df['RCW_status'] = df['RCW_status'].apply(lambda x: ldw_status_mapping(x))
- # df['TLC_status'] = df['TLC_status'].apply(lambda x: ldw_status_mapping(x))
- # df['FVSR_status'] = df['FVSR_status'].apply(lambda x: ldw_status_mapping(x))
- # df['BSD_status'] = df['BSD_status'].apply(lambda x: ldw_status_mapping(x))
- # df['RCTA_status'] = df['RCTA_status'].apply(lambda x: ldw_status_mapping(x))
- # df['FCTA_status'] = df['FCTA_status'].apply(lambda x: ldw_status_mapping(x))
- # df['ISA_status'] = df['ISA_status'].apply(lambda x: ldw_status_mapping(x))
- # df['TSR_status'] = df['TSR_status'].apply(lambda x: ldw_status_mapping(x))
- # df['AVM_status'] = df['AVM_status'].apply(lambda x: ldw_status_mapping(x))
- # df['PDC_status'] = df['PDC_status'].apply(lambda x: ldw_status_mapping(x))
- # df['APA_status'] = df['APA_status'].apply(lambda x: ldw_status_mapping(x))
- # df['MEB_status'] = df['MEB_status'].apply(lambda x: ldw_status_mapping(x))
- # df['RDA_status'] = df['RDA_status'].apply(lambda x: ldw_status_mapping(x))
- return df
- def _get_driver_ctrl_data(self, df):
- """
- Process and get drive ctrl information. Such as brake pedal, throttle pedal and steering wheel.
- Args:
- df: A dataframe of driver ctrl data.
- Returns:
- driver_ctrl_data: A dict of driver ctrl info.
- """
- time_list = df['simTime'].round(2).values.tolist()
- frame_list = df['simFrame'].values.tolist()
- max_brakePedal = df['brakePedal'].max()
- if max_brakePedal < 1:
- df['brakePedal'] = df['brakePedal'] * 100
- brakePedal_list = df['brakePedal'].values.tolist()
- max_throttlePedal = df['throttlePedal'].max()
- if max_throttlePedal < 1:
- df['throttlePedal'] = df['throttlePedal'] * 100
- throttlePedal_list = df['throttlePedal'].values.tolist()
- steeringWheel_list = df['steeringWheel'].values.tolist()
- driver_ctrl_data = {
- "time_list": time_list,
- "frame_list": frame_list,
- "brakePedal_list": brakePedal_list,
- "throttlePedal_list": throttlePedal_list,
- "steeringWheel_list": steeringWheel_list
- }
- return driver_ctrl_data
- class StatusTime(object):
- """
- # 调用方式:使用isin()方法来筛选DataFrame中simTime列与time_list中值一致的行
- filtered_df = df[df['simTime'].isin(self.status_time_dict['ACC_status'])]
- """
- def __init__(self, status_df):
- self.status_df = status_df
- self.status_list = []
- self.no_status_time_list = []
- self.status_time_dict = {}
- self._run()
- def _get_status_list(self):
- status_columns_list = self.status_df.columns.tolist()
- self.status_list = [x for x in status_columns_list if x not in ['simTime', 'simFrame']]
- def _get_no_status_time_list(self):
- # 筛选出所有状态机列值都为0的行
- filtered_rows = self.status_df[self.status_df[self.status_list].eq(0).all(axis=1)]
- # 将筛选后的simTime列的值作为列表输出
- self.no_status_time_list = filtered_rows['simTime'].tolist()
- def _get_status_time_dict(self):
- for status in self.status_list:
- status_time = self.status_df[self.status_df[status] != 0]['simTime'].values.tolist()
- self.status_time_dict[status] = status_time
- self.status_time_dict['no_status'] = self.no_status_time_list
- def _run(self):
- self._get_status_list()
- self._get_no_status_time_list()
- self._get_status_time_dict()
|