123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: yangzihao(yangzihao@china-icv.cn)
- @Data: 2024/01/30
- @Last Modified: 2024/01/30
- @Summary: Evaluateion functions
- """
- import os
- import sys
- sys.path.append('../config')
- sys.path.append('../common')
- sys.path.append('../modules')
- sys.path.append('../results')
- import json
- import traceback
- import pandas as pd
- import log
- from config_parser import ConfigParse
- from single_case_evaluate import single_case_evaluate, single_case_statistic
- from common import df2csv, dict2json
- from data_quality import frame_loss_statistic
- def single_case_eval(configPath, dataPath, reportPath, csvPath, playbackPath, customMetricPath, customScorePath,
- case_name):
- logger = log.get_logger()
- # case_name = os.path.basename(os.path.dirname(dataPath))
- # 判断文件夹是否为空
- if len(os.listdir(dataPath)) == 0:
- print("No files in data_path!") # 路径异常
- logger.error(f"[case:{case_name}] SINGLE_CASE_EVAL: No files in data_path!")
- sys.exit(-1)
- # 加载配置文件
- try:
- # json_file = os.path.join(configPath, 'config.json')
- config = ConfigParse(configPath)
- except Exception as e:
- print('Config file parsing ERROR!', e)
- traceback.print_exc()
- logger.error(f"[case:{case_name}] SINGLE_CASE_EVAL: Config file parsing ERROR: {repr(e)}!", exc_info=True)
- sys.exit(-1)
- # data quality detect
- is_bad_quality = data_quality_detect(dataPath, case_name)
- if is_bad_quality:
- print("Frame loss > 10%, system exit.")
- # sys.exit(-1)
- # data complement
- """
- TODO: data complement
- """
- # 单用例评价,并生成报告
- try:
- case_dict = single_case_evaluate(dataPath, config, customMetricPath, customScorePath, case_name) # 评估单用例
- single_case_dict = single_case_statistic(case_dict) # 对单用例结果增加内容,并生成报告
- # 回放
- df2csv(case_dict['playbackData'], playbackPath)
- # 将DataFrame保存为csv文件
- df2csv(case_dict['evalData'], csvPath)
- # 将单用例测试结果保存为json文件
- single_case_dict.pop('playbackData')
- single_case_dict.pop('evalData')
- dict2json(single_case_dict, reportPath)
- except Exception as e:
- traceback.print_exc()
- logger.error(f"[case:{case_name}] SINGLE_CASE_EVAL: Evaluate single case ERROR: {repr(e)}!", exc_info=True)
- # guarantee_result(reportPath, csvPath, playbackPath) # 保底生成文件
- sys.exit(-1)
- def data_quality_detect(dataPath, case_name):
- logger = log.get_logger()
- # FIRST_ORDER_LOSS = 0.01 # first : little loss 100
- SECOND_ORDER_LOSS = 0.05 # second : could use 95
- THIRD_ORDER_LOSS = 0.10 # third : could not use 90
- is_bad_quality = False
- try:
- frame_loss_dict = frame_loss_statistic(dataPath)
- except Exception as e:
- traceback.print_exc()
- logger.error(f"[case:{case_name}] SINGLE_CASE_EVAL: frame loss statistic ERROR: {repr(e)}!", exc_info=True)
- is_bad_quality = True
- return is_bad_quality
- for key, value in frame_loss_dict.items():
- # sensor data
- sensor_data = ["RoadMark", "RoadPos", "TrafficLight", "TrafficSign"]
- if any(file in key for file in sensor_data):
- logger.info(f"[case:{case_name}] SINGLE_CASE_EVAL: [{key}] : {value['result']}")
- continue
- if value['frame_loss_rate'] > THIRD_ORDER_LOSS:
- is_bad_quality = True
- logger.error(
- f"[case:{case_name}] SINGLE_CASE_EVAL: [{key}] frame loss rate > {THIRD_ORDER_LOSS * 100}%: {value['result']}")
- elif value['frame_loss_rate'] > SECOND_ORDER_LOSS:
- logger.info(
- f"[case:{case_name}] SINGLE_CASE_EVAL: [{key}] frame loss rate > {SECOND_ORDER_LOSS * 100}%: {value['result']}")
- else:
- logger.info(
- f"[case:{case_name}] SINGLE_CASE_EVAL: [{key}] frame loss rate < {SECOND_ORDER_LOSS * 100}%: {value['result']}")
- return is_bad_quality
- def guarantee_result(reportPath, csvPath, playbackPath):
- result = {
- "details": {
- "safe": {
- "name": "安全性",
- "weight": "100.00%",
- "collisionRisk": 0,
- "noObjectCar": "false",
- "score": 100,
- "level": "优秀",
- "weightDistribution": {
- "name": "安全性",
- "safeTime": {
- "weight": "时间类型(27.71%)",
- "indexes": {
- "TTC": "TTC(18.34%)",
- "MTTC": "MTTC(50.01%)",
- "THW": "THW(31.65%)"
- }
- },
- "safeDistance": {
- "weight": "距离类型(44.37%)",
- "indexes": {
- "LonSD": "LonSD(76.80%)",
- "LatSD": "LatSD(23.20%)"
- }
- },
- "safeAcceleration": {
- "weight": "加速度类型(2.60%)",
- "indexes": {
- "DRAC": "DRAC(66.67%)",
- "BTN": "BTN(6.22%)",
- "STN": "STN(27.11%)"
- }
- },
- "safeProbability": {
- "weight": "概率类型(25.32%)",
- "indexes": {
- "collisionRisk": "碰撞风险概率(50.00%)",
- "collisionSeverity": "碰撞严重程度(50.00%)"
- }
- }
- },
- "details": {
- "safeTime": {
- "name": "时间类型",
- "score": 100,
- "level": "较差",
- "description1": "TTC和THW指标表现良好,MTTC指标表现不佳,MTTC极值超过合理范围73.59%",
- "description2": "TTC和THW指标均在合理范围内,表现良好,MTTC指标共有0.32秒超出合理范围,算法应加强在该时间段对跟车距离的控制",
- "indexes": {
- "TTC": {
- "name": "TTC",
- "meaning": "TTC",
- "score": 100,
- "extremum": "3.76",
- "range": "[2.86, inf)",
- "rate": "100%"
- },
- "MTTC": {
- "name": "MTTC",
- "meaning": "MTTC",
- "score": 100,
- "extremum": "0.32",
- "range": "[1.2, inf)",
- "rate": "98.9%"
- },
- "THW": {
- "name": "THW",
- "meaning": "THW",
- "score": 100,
- "extremum": "2.98",
- "range": "[0.4, inf)",
- "rate": "100%"
- }
- },
- "builtin": {
- "MTTC": {
- "name": "MTTC",
- "data": [],
- "range": "[1.2, inf)"
- },
- "THW": {
- "name": "THW",
- "data": [],
- "range": "[0.4, inf)"
- }
- },
- "custom": {}
- },
- },
- "description1": "未满足设计指标要求。算法在本轮测试中有碰撞风险,需要提高算法在时间类型和距离类型上的表现。在时间类型和距离类型中,MTTC指标共有0.32秒超出合理范围;LonSD指标共有3.93秒超出合理范围;STN指标共有0.07秒超出合理范围;",
- "description2": "安全性在时间类型和距离类型上存在严重风险,需要重点优化。",
- },
- "commonData": {
- "per": {
- "name": "脚刹/油门踏板开度(百分比)",
- "legend": [
- "刹车踏板开度",
- "油门踏板开度"
- ],
- "data": []
- },
- "ang": {
- "name": "方向盘转角(角度°)",
- "data": []
- },
- "spe": {
- "name": "速度(km/h)",
- "legend": [
- "自车速度",
- "目标车速度",
- "自车与目标车相对速度"
- ],
- "data": []
- },
- "acc": {
- "name": "加速度(m/s²)",
- "legend": [
- "横向加速度",
- "纵向加速度"
- ],
- "data": []
- },
- "dis": {
- "name": "前车距离(m)",
- "data": []
- },
- "ttc": {
- "name": "TTC(m)",
- "data": []
- }
- },
- "commonMarkLine": []
- },
- "algorithmComprehensiveScore": 100,
- "algorithmLevel": "优秀",
- "testMileage": "0.00米",
- "testDuration": "0.00秒",
- "algorithmResultDescription1": "车辆在本轮测试中,未出现违反交通规则行为、跟停行为和不舒适行为。",
- "algorithmResultDescription2": "综上所述,算法表现良好。"
- }
- with open(f'{reportPath}', 'w', encoding='utf-8') as f:
- f.write(json.dumps(result, ensure_ascii=False))
- eval_data_columns = ['simTime', 'simFrame', 'playerId', 'type', 'posX', 'posY', 'posZ', 'posH', 'speedX', 'speedY',
- 'speedZ', 'accelX', 'accelY', 'accelZ', 'dimX', 'dimY', 'dimZ', 'offX', 'speedH', 'accelH',
- 'travelDist']
- eval_data_df = pd.DataFrame(columns=eval_data_columns)
- eval_data_df.to_csv(f'{csvPath}', index=False)
- playback_data_columns = ['simTime', 'simFrame', 'speed', 'curvHor', 'rollRel', 'pitchRel', 'latSpeedRel',
- 'lonSpeedRel', 'latDistanceRel', 'lonDistanceRel']
- playback_data_df = pd.DataFrame(columns=playback_data_columns)
- playback_data_df.to_csv(f'{playbackPath}', index=False)
|