cicv_LKA_02_lateral_offset.py 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhangyu
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. 最大横向偏移量
  17. zy_center_distance_expectation
  18. """
  19. import math
  20. import pandas as pd
  21. import numpy as np
  22. from common import zip_time_pairs, continuous_group
  23. from log import logger
  24. """import functions"""
  25. # custom metric codes
  26. class CustomMetric(object):
  27. def __init__(self, all_data, case_name):
  28. self.data = all_data
  29. self.optimal_dict = self.data.config
  30. self.case_name = case_name
  31. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  32. self.df = pd.DataFrame()
  33. self.ego_df = pd.DataFrame()
  34. self.df_follow = pd.DataFrame()
  35. self.roadMark_df = pd.DataFrame()
  36. self.roadPos_df = pd.DataFrame()
  37. self.time_list_follow = list()
  38. self.frame_list_follow = list()
  39. self.dist_list = list()
  40. self.dist_deviation_list = list()
  41. self.dist_deviation_list_full_time = list()
  42. self.result = {
  43. "name": "最大横向偏移量",
  44. "value": [],
  45. # "weight": [],
  46. "tableData": {
  47. "avg": "", # 平均值,或指标值
  48. "max": "",
  49. "min": ""
  50. },
  51. "reportData": {
  52. "name": "最大横向偏移量(m)",
  53. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  54. "data": [],
  55. "markLine": [],
  56. "range": [],
  57. },
  58. "statusFlag": {}
  59. }
  60. self.run()
  61. print(f"指标02: 最大横向偏移量: {self.result['value']}")
  62. def data_extract(self):
  63. self.df = self.data.object_df
  64. self.ego_df = self.data.object_df[self.data.object_df.playerId == 1]
  65. self.df_follow = self.df[self.df['LKA_status'] == "Active"].copy() # 数字3对应LKA的Active
  66. self.roadMark_df = self.data.road_mark_df
  67. self.roadPos_df = self.data.road_pos_df
  68. if self.df_follow.empty:
  69. self.result['statusFlag']['function_LKA'] = False
  70. else:
  71. self.result['statusFlag']['function_LKA'] = True
  72. def dist(self, x1, y1, x2, y2):
  73. dis = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
  74. return dis
  75. def Compute_nearby_distance_to_lane_boundary(self, x, width_ego):
  76. if x.lateralDist < abs(x.right_lateral_distance):
  77. return x.lateralDist - width_ego/2
  78. else:
  79. return abs(x.right_lateral_distance) - width_ego/2
  80. def func_laneOffset_abs(self, x):
  81. return abs(x.laneOffset)
  82. def data_analyze(self):
  83. # 提取自车宽度
  84. roadPos_df = self.roadPos_df
  85. # 提取距离左车道线和右车道线距离
  86. roadPos_ego_df = roadPos_df[roadPos_df.playerId == 1].reset_index(drop=True)
  87. # # 计算到车道边界线距离
  88. roadPos_ego_df['laneOffset_abs'] = roadPos_ego_df.apply(lambda x: self.func_laneOffset_abs(x), axis=1)
  89. max_laneOffset_abs_index = roadPos_ego_df['laneOffset_abs'].idxmax()
  90. row_with_max_value = roadPos_ego_df.iloc[max_laneOffset_abs_index].laneOffset
  91. self.result['value'] = [row_with_max_value]
  92. self.time_list_follow = roadPos_ego_df['simTime'].values.tolist()
  93. self.frame_list_follow = roadPos_ego_df['simFrame'].values.tolist()
  94. self.dist_deviation_list = roadPos_ego_df['laneOffset'].values.tolist()
  95. def markline_statistic(self):
  96. unfunc_df = pd.DataFrame({'simTime': self.time_list_follow, 'simFrame': self.frame_list_follow,
  97. 'dist_deviation': self.dist_deviation_list})
  98. unfunc_df = unfunc_df[unfunc_df['simFrame'] > 1]
  99. # v_df = unfunc_df[unfunc_df['dist_deviation'] > 0]
  100. v_df = unfunc_df
  101. v_df = v_df[['simTime', 'simFrame', 'dist_deviation']]
  102. v_follow_df = continuous_group(v_df)
  103. v_follow_df['type'] = "ICA"
  104. self.markline_df = pd.concat([self.markline_df, v_follow_df], ignore_index=True)
  105. def report_data_statistic(self):
  106. time_list = self.ego_df['simTime'].values.tolist()
  107. graph_list = [x for x in self.dist_deviation_list if not np.isnan(x)]
  108. self.result['tableData']['avg'] = f'{np.mean(graph_list):.2f}' if graph_list else 0
  109. self.result['tableData']['max'] = f'{max(graph_list):.2f}' if graph_list else 0
  110. self.result['tableData']['min'] = f'{min(graph_list):.2f}' if graph_list else 0
  111. zip_vs_time = zip_time_pairs(time_list, self.dist_deviation_list)
  112. self.result['reportData']['data'] = zip_vs_time
  113. self.markline_statistic()
  114. markline_slices = self.markline_df.to_dict('records')
  115. # self.result['reportData']['markLine'] = markline_slices
  116. self.result['reportData']['range'] = f"[-1.875, 1.875]"
  117. def run(self):
  118. # logger.info(f"Custom metric run:[{self.result['name']}].")
  119. logger.info(f"[case:{self.case_name}] Custom metric:[ica_distance_deviation:{self.result['name']}] evaluate.")
  120. try:
  121. self.data_extract()
  122. except Exception as e:
  123. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  124. try:
  125. self.data_analyze()
  126. except Exception as e:
  127. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  128. try:
  129. self.report_data_statistic()
  130. except Exception as e:
  131. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  132. # if __name__ == "__main__":
  133. # pass