cicv_ica_longitudinal_control09_overshoot_THW.py 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen, yangzihao
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. """
  17. import math
  18. import pandas as pd
  19. import numpy as np
  20. from common import zip_time_pairs, continuous_group
  21. from log import logger
  22. """import functions"""
  23. # custom metric codes
  24. class CustomMetric(object):
  25. def __init__(self, all_data, case_name):
  26. self.data = all_data
  27. self.optimal_dict = self.data.config
  28. self.case_name = case_name
  29. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  30. self.graph_list = []
  31. self.df = pd.DataFrame()
  32. self.ego_df = pd.DataFrame()
  33. self.df_ica = pd.DataFrame()
  34. self.stable_average_THW = None
  35. self.overshoot_THW = None
  36. self.result = {
  37. "name": "跟车超调量",
  38. "value": [],
  39. # "weight": [],
  40. "tableData": {
  41. "avg": "", # 平均值,或指标值
  42. "max": "",
  43. "min": ""
  44. },
  45. "reportData": {
  46. "name": "跟车超调量(%)",
  47. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  48. "data": [],
  49. "markLine": [],
  50. "range": [],
  51. },
  52. "statusFlag": {}
  53. }
  54. self.run()
  55. print(f"跟车超调量: {self.result['value']}")
  56. def data_extract(self):
  57. self.df = self.data.object_df
  58. self.ego_df = self.data.ego_data
  59. self.df_ica = self.ego_df[self.ego_df['ICA_status'] == "Only_Longitudinal_Control"].copy() # 数字3对应ICA的Active
  60. # self.df_ica = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  61. # self.df_ica = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  62. if self.df_ica.empty:
  63. self.result['statusFlag']['function_ICA'] = False
  64. else:
  65. self.result['statusFlag']['function_ICA'] = True
  66. def _get_first_change_index_THW(self):
  67. """
  68. 获取DataFrame中'set_headway_time'列首次发生变化的索引值。
  69. Args:
  70. 无参数。
  71. Returns:
  72. Union[int, None]: 如果存在变化,则返回首次发生变化的索引值(int类型),否则返回None。
  73. """
  74. change_indices = self.df_ica[self.df_ica['set_headway_time'] != self.df_ica['set_headway_time'].shift()].index
  75. if not change_indices.empty:
  76. first_change_index = change_indices.min()
  77. else:
  78. first_change_index = None
  79. return first_change_index
  80. def _find_stable_THW(self, window_size, percent_deviation, set_value):
  81. """
  82. 在给定的数据窗口中查找稳定跟车时距离THW,并计算该段内THW的平均值。
  83. Args:
  84. window_size (int): 窗口大小,表示在数据中寻找稳定段时考虑的连续数据点数量。
  85. percent_deviation (float): THW值相对于设定值的允许偏差百分比。
  86. set_value (float): THW的设定值。
  87. Returns:
  88. None
  89. """
  90. THW = self.df_ica['THW'].values
  91. deviation = set_value * (percent_deviation / 100)
  92. stable_start = None
  93. stable_average_THW = None
  94. for i in range(len(THW) - window_size + 1):
  95. window_data = THW[i:i + window_size]
  96. if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
  97. if stable_start is None:
  98. stable_start = i
  99. stable_end = i + window_size - 1
  100. stable_average_THW = np.mean(window_data)
  101. j = i + window_size
  102. while j < len(THW) - window_size + 1:
  103. next_window_data = THW[j:j + window_size]
  104. if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
  105. stable_end = j + window_size - 1
  106. stable_average_THW = (stable_average_THW * (j - stable_start) + sum(next_window_data)) / (
  107. j - stable_start + window_size)
  108. j += window_size
  109. else:
  110. stable_start = j + window_size - 1
  111. stable_end = i + window_size - 1
  112. stable_average_THW = np.mean(window_data)
  113. break
  114. # self.stable_start_time_THW = self.df_ica['simTime'].iloc[stable_start]
  115. self.stable_average_THW = stable_average_THW
  116. def data_analyze(self):
  117. first_change_index = self._get_first_change_index_THW()
  118. set_headway_time = self.df_ica.loc[first_change_index, 'set_headway_time']
  119. self._find_stable_THW(window_size=4, percent_deviation=5, set_value=set_headway_time)
  120. if not first_change_index:
  121. self.overshoot_THW = 0
  122. else:
  123. initial_THW = self.df_ica.loc[first_change_index, 'THW']
  124. if initial_THW > self.stable_average_THW:
  125. self.overshoot_THW = (self.stable_average_THW - self.df_ica['THW'].min()) * 100 / self.stable_average_THW
  126. elif initial_THW < self.stable_average_THW:
  127. self.overshoot_THW = (self.df_ica['THW'].max() - self.stable_average_THW) * 100 / self.stable_average_THW
  128. else:
  129. self.overshoot_THW = 0
  130. self.result['value'] = [round(self.overshoot_THW, 3)]
  131. print(f"overshoot_THW: {self.overshoot_THW}")
  132. def markline_statistic(self):
  133. pass
  134. def report_data_statistic(self):
  135. # time_list = self.ego_df['simTime'].values.tolist()
  136. # graph_list = [x for x in self.graph_list if not np.isnan(x)]
  137. self.result['tableData']['avg'] = self.result['value'][0] if not self.df_ica.empty else '-'
  138. self.result['tableData']['max'] = '-'
  139. self.result['tableData']['min'] = '-'
  140. # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
  141. self.result['reportData']['data'] = []
  142. # self.markline_statistic()
  143. # markline_slices = self.markline_df.to_dict('records')
  144. self.result['reportData']['markLine'] = []
  145. self.result['reportData']['range'] = [0, 1.2]
  146. def run(self):
  147. # logger.info(f"Custom metric run:[{self.result['name']}].")
  148. logger.info(f"[case:{self.case_name}] Custom metric:[overshoot_THW:{self.result['name']}] evaluate.")
  149. try:
  150. self.data_extract()
  151. except Exception as e:
  152. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  153. try:
  154. self.data_analyze()
  155. except Exception as e:
  156. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  157. try:
  158. self.report_data_statistic()
  159. except Exception as e:
  160. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  161. # if __name__ == "__main__":
  162. # pass