ica_distance_deviation_0531.py 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: yangzihao(yangzihao@china-icv.cn)
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. import math
  15. import pandas as pd
  16. import numpy as np
  17. from common import zip_time_pairs, continuous_group
  18. from log import logger
  19. """import functions"""
  20. # def zip_time_pairs(time_list, zip_list):
  21. # zip_time_pairs = zip(time_list, zip_list)
  22. # zip_vs_time = [[x, y] for x, y in zip_time_pairs if not math.isnan(y)]
  23. # return zip_vs_time
  24. # def continuous_group(df):
  25. # time_list = df['simTime'].values.tolist()
  26. # frame_list = df['simFrame'].values.tolist()
  27. #
  28. # group_time = []
  29. # group_frame = []
  30. # sub_group_time = []
  31. # sub_group_frame = []
  32. #
  33. # for i in range(len(frame_list)):
  34. # if not sub_group_time or frame_list[i] - frame_list[i - 1] <= 1:
  35. # sub_group_time.append(time_list[i])
  36. # sub_group_frame.append(frame_list[i])
  37. # else:
  38. # group_time.append(sub_group_time)
  39. # group_frame.append(sub_group_frame)
  40. # sub_group_time = [time_list[i]]
  41. # sub_group_frame = [frame_list[i]]
  42. #
  43. # group_time.append(sub_group_time)
  44. # group_frame.append(sub_group_frame)
  45. # group_time = [g for g in group_time if len(g) >= 2]
  46. # group_frame = [g for g in group_frame if len(g) >= 2]
  47. #
  48. # # 输出图表值
  49. # time = [[g[0], g[-1]] for g in group_time]
  50. # frame = [[g[0], g[-1]] for g in group_frame]
  51. #
  52. # time_df = pd.DataFrame(time, columns=['start_time', 'end_time'])
  53. # frame_df = pd.DataFrame(frame, columns=['start_frame', 'end_frame'])
  54. #
  55. # result_df = pd.concat([time_df, frame_df], axis=1)
  56. #
  57. # return result_df
  58. # def continous_judge(frame_list):
  59. # if not frame_list:
  60. # return 0
  61. #
  62. # cnt = 1
  63. # for i in range(1, len(frame_list)):
  64. # if frame_list[i] - frame_list[i - 1] <= 3:
  65. # continue
  66. # cnt += 1
  67. # return cnt
  68. # custom metric codes
  69. class CustomMetric(object):
  70. def __init__(self, all_data, case_name):
  71. self.data = all_data
  72. self.optimal_dict = self.data.config
  73. self.case_name = case_name
  74. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  75. self.df = pd.DataFrame()
  76. self.df_follow = pd.DataFrame()
  77. self.time_list_follow = list()
  78. self.frame_list_follow = list()
  79. self.dist_list = list()
  80. self.dist_deviation_list = list()
  81. self.dist_deviation_list_full_time = list()
  82. self.result = {
  83. "name": "跟车距离偏差",
  84. "value": [],
  85. # "weight": [],
  86. "tableData": {
  87. "avg": "", # 平均值,或指标值
  88. "max": "",
  89. "min": ""
  90. },
  91. "reportData": {
  92. "name": "跟车距离偏差(s)",
  93. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  94. "data": [],
  95. "markLine": [],
  96. "range": [],
  97. }
  98. }
  99. self.run()
  100. def data_extract(self):
  101. self.df = self.data.object_df
  102. self.df_follow = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  103. # self.df_follow = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  104. def dist(self, x1, y1, x2, y2):
  105. dis = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
  106. return dis
  107. def data_analyze(self):
  108. df = self.df_follow.copy()
  109. col_list = ['simTime', 'simFrame', 'playerId', 'v', 'posX', 'posY'] # target_id
  110. df = df[col_list].copy()
  111. ego_df = df[df['playerId'] == 1][['simTime', 'simFrame', 'v', 'posX', 'posY']]
  112. # 筛选目标车(同一车道内,距离最近的前车)
  113. # obj_df = df[df['playerId'] == df['target_id']]
  114. target_id = 2
  115. obj_df = df[df['playerId'] == target_id][['simTime', 'simFrame', 'v', 'posX', 'posY']] # 目标车
  116. obj_df = obj_df.rename(columns={'v': 'v_obj', 'posX': 'posX_obj', 'posY': 'posY_obj'})
  117. df_merge = pd.merge(ego_df, obj_df, on=['simTime', 'simFrame'], how='left')
  118. df_merge['dist'] = df_merge.apply(
  119. lambda row: self.dist(row['posX'], row['posY'], row['posX_obj'], row['posY_obj']), axis=1)
  120. self.dist_list = df_merge['dist'].values.tolist()
  121. df_merge['time_gap'] = df_merge['dist'] / df_merge['v']
  122. safe_time_gap = 3
  123. df_merge['dist_deviation'] = df_merge['time_gap'].apply(
  124. lambda x: 0 if (x >= safe_time_gap) else (safe_time_gap - x))
  125. df_merge.replace([np.inf, -np.inf], np.nan, inplace=True) # 异常值处理
  126. self.time_list_follow = df_merge['simTime'].values.tolist()
  127. self.frame_list_follow = df_merge['simFrame'].values.tolist()
  128. self.dist_deviation_list = df_merge['dist_deviation'].values.tolist()
  129. tmp_df = ego_df[['simTime', 'simFrame']].copy()
  130. dist_deviation_df = df_merge[['simTime', 'dist_deviation']].copy()
  131. df_merged1 = pd.merge(tmp_df, dist_deviation_df, on='simTime', how='left')
  132. self.dist_deviation_list_full_time = df_merged1['dist_deviation'].values.tolist()
  133. distance_deviation = df_merge['dist_deviation'].max()
  134. self.result['value'] = [round(distance_deviation, 2)] if not np.isnan(distance_deviation) else [0]
  135. def markline_statistic(self):
  136. unfunc_df = pd.DataFrame({'simTime': self.time_list_follow, 'simFrame': self.frame_list_follow,
  137. 'dist_deviation': self.dist_deviation_list})
  138. unfunc_df = unfunc_df[unfunc_df['simFrame'] > 1]
  139. v_df = unfunc_df[unfunc_df['dist_deviation'] > 10]
  140. v_df = v_df[['simTime', 'simFrame', 'dist_deviation']]
  141. v_follow_df = continuous_group(v_df)
  142. v_follow_df['type'] = "ICA"
  143. self.markline_df = pd.concat([self.markline_df, v_follow_df], ignore_index=True)
  144. def report_data_statistic(self):
  145. time_list = self.df['simTime'].values.tolist()
  146. graph_list = [x for x in self.dist_deviation_list if not np.isnan(x)]
  147. self.result['tableData']['avg'] = f'{np.mean(graph_list):.2f}' if graph_list else 0
  148. self.result['tableData']['max'] = f'{max(graph_list):.2f}' if graph_list else 0
  149. self.result['tableData']['min'] = f'{min(graph_list):.2f}' if graph_list else 0
  150. zip_vs_time = zip_time_pairs(time_list, self.dist_deviation_list)
  151. self.result['reportData']['data'] = zip_vs_time
  152. self.markline_statistic()
  153. markline_slices = self.markline_df.to_dict('records')
  154. self.result['reportData']['markLine'] = markline_slices
  155. self.result['reportData']['range'] = f"[0, 10]"
  156. def run(self):
  157. # logger.info(f"Custom metric run:[{self.result['name']}].")
  158. logger.info(f"[case:{self.case_name}] Custom metric:[ica_distance_deviation:{self.result['name']}] evaluate.")
  159. try:
  160. self.data_extract()
  161. except Exception as e:
  162. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  163. try:
  164. self.data_analyze()
  165. except Exception as e:
  166. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  167. try:
  168. self.report_data_statistic()
  169. except Exception as e:
  170. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  171. # if __name__ == "__main__":
  172. # pass