data_process_0715.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: yangzihao(yangzihao@china-icv.cn)
  10. @Data: 2023/11/27
  11. @Last Modified: 2023/11/27
  12. @Summary: Csv data process functions
  13. """
  14. import os
  15. import sys
  16. import numpy as np
  17. import pandas as pd
  18. from status_mapping import *
  19. # from status_mapping import acc_status_mapping, lka_status_mapping, ldw_status_mapping
  20. from data_quality import DataQuality, get_all_files, frame_loss_statistic
  21. from common import cal_velocity
  22. from data_info import CsvData
  23. import log
  24. class DataProcess(object):
  25. """
  26. The data process class. It is a template to get evaluation raw data and process the raw data.
  27. Attributes:
  28. """
  29. def __init__(self, data_path, config, case_name):
  30. self.data_path = data_path
  31. self.case_name = case_name
  32. # config info
  33. self.config = config
  34. # self.safe_config = config.config['safe']
  35. # self.function_config = config.config['function']
  36. # self.compliance_config = config.config['compliance']
  37. # self.comfort_config = config.config['comfort']
  38. # self.efficient_config = config.config['efficient']
  39. # data process
  40. self.ego_df = pd.DataFrame()
  41. self.object_df = pd.DataFrame()
  42. self.driver_ctrl_df = pd.DataFrame()
  43. self.road_mark_df = pd.DataFrame()
  44. self.road_pos_df = pd.DataFrame()
  45. self.traffic_light_df = pd.DataFrame()
  46. self.traffic_signal_df = pd.DataFrame()
  47. self.status_df = pd.DataFrame()
  48. self.obj_data = {}
  49. self.ego_data = {}
  50. self.obj_id_list = {}
  51. self.car_info = {}
  52. self.report_info = {}
  53. self.driver_ctrl_data = {}
  54. self._process()
  55. def _process(self):
  56. self._merge_csv()
  57. self._read_csv()
  58. self._invalid_detect()
  59. self._time_alignment()
  60. # self._signal_mapping()
  61. self.car_info = self._get_car_info(self.object_df)
  62. # self._compact_data()
  63. # self._abnormal_detect()
  64. # self._status_map(self.object_df)
  65. self._object_df_process()
  66. self.report_info = self._get_report_info(self.obj_data[1])
  67. self.driver_ctrl_data = self._get_driver_ctrl_data(self.driver_ctrl_df)
  68. def _invalid_column_detect(self, df, csv_name): # head and tail detect
  69. """
  70. Detect the head of the csv whether begin with 0 or not.
  71. Returns:
  72. A dataframe, which 'time' column begin with 0.
  73. """
  74. logger = log.get_logger()
  75. for column in df.columns:
  76. if df[column].nunique() == 1:
  77. # if 9999.00 in df[column].values or "9999.00" in df[column].values:
  78. logger.warning(
  79. f"[case:{self.case_name}] SINGLE_CASE_EVAL: [{csv_name}] data '{column}' invalid WARNING!")
  80. def _csv_interpolate_by_frame(self, df):
  81. # df = pd.read_csv(input) # 读取CSV文件
  82. df['simFrame'] = pd.to_numeric(df['simFrame'], errors='coerce') # 转换simFrame列为数字类型
  83. df = df.sort_values(by='simFrame') # 根据simFrame列进行排序
  84. full_simFrame_series = pd.Series(range(df['simFrame'].min(), df['simFrame'].max() + 1)) # 构建一个包含连续simFrame的完整序列
  85. df = df.merge(full_simFrame_series.rename('simFrame'), how='right') # 使用merge方法将原始数据与完整序列合并,以填充缺失的simFrame行
  86. df = df.interpolate(method='linear') # 对其他列进行线性插值
  87. df['simFrame'] = df['simFrame'].astype(int) # 恢复simFrame列的数据类型为整数
  88. # df.to_csv(output, index=False) # 保存处理后的数据到新的CSV文件
  89. result = df.copy()
  90. return result
  91. def _data_time_align(self, base_time, df):
  92. # 特判,如果输入的dataframe无数值,那么直接返回
  93. if df.empty:
  94. return df
  95. FRAME_RATE = 100
  96. time_diff = 1.0 / FRAME_RATE
  97. # 创建一个新的递增的 simTime 序列,从 0 开始,步长为 0.01 (time_diff)
  98. new_sim_time_values = np.arange(0, base_time.max() + time_diff, time_diff)
  99. # 创建一个映射字典,将原始 simTime 值映射到新的 simTime 值
  100. original_to_new_sim_time = {original: round(new_sim_time_values[i], 2) for i, original in enumerate(base_time)}
  101. # 使用isin函数来过滤df,并筛选出simFrame大于0的数据
  102. filtered_df1 = df[df['simTime'].isin(base_time)]
  103. filtered_df2 = filtered_df1[filtered_df1['simFrame'] > 0]
  104. filtered_df = filtered_df2.reset_index(drop=True)
  105. # 使用映射字典来替换 filtered_df 中的 simTime 列
  106. filtered_df['simTime'] = filtered_df['simTime'].map(original_to_new_sim_time)
  107. # 同步更新simFrame
  108. filtered_df['simFrame'] = (filtered_df['simTime'] * FRAME_RATE + 1).round().astype(int)
  109. return filtered_df
  110. def _merge_csv(self):
  111. # if os.path.exists(os.path.join(self.data_path, 'merged_ObjState.csv')):
  112. # return
  113. # read csv files
  114. df_ego = pd.read_csv(os.path.join(self.data_path, 'EgoState.csv')).drop_duplicates()
  115. df_object = pd.read_csv(os.path.join(self.data_path, 'ObjState.csv')).drop_duplicates() # 车辆行驶信息
  116. df_laneinfo = pd.read_csv(os.path.join(self.data_path, 'LaneInfo.csv')).drop_duplicates() # 曲率信息, 曲率加速度信息
  117. df_roadPos = pd.read_csv(os.path.join(self.data_path, 'RoadPos.csv')).drop_duplicates()
  118. df_status = pd.read_csv(os.path.join(self.data_path, 'VehState.csv'),
  119. index_col=False).drop_duplicates() # 状态机信息
  120. df_vehicleSys = pd.read_csv(os.path.join(self.data_path, 'VehicleSystems.csv')).drop_duplicates() # 车灯信息
  121. # invalid detect
  122. self._invalid_column_detect(df_laneinfo, 'LaneInfo.csv')
  123. self._invalid_column_detect(df_object, 'ObjState.csv')
  124. self._invalid_column_detect(df_vehicleSys, 'VehicleSystems.csv')
  125. self._invalid_column_detect(df_status, 'VehState.csv')
  126. # self._invalid_column_detect(df_roadPos, 'RoadPos.csv')
  127. df_ego['simTime'] = df_ego['simTime'].round(2) # EGO: km/h
  128. df_object['simTime'] = df_object['simTime'].round(2) # OBJ: m/s, need unit conversion
  129. df_object['speedX'] = df_object['speedX'] * 3.6 # m/s to km/h
  130. df_object['speedY'] = df_object['speedY'] * 3.6 # m/s to km/h
  131. df_object['speedZ'] = df_object['speedZ'] * 3.6 # m/s to km/h
  132. base_time = df_ego['simTime'].unique()
  133. df_ego = self._data_time_align(base_time, df_ego)
  134. df_object = self._data_time_align(base_time, df_object)
  135. df_laneinfo = self._data_time_align(base_time, df_laneinfo)
  136. df_roadPos = self._data_time_align(base_time, df_roadPos)
  137. df_status = self._data_time_align(base_time, df_status)
  138. df_vehicleSys = self._data_time_align(base_time, df_vehicleSys)
  139. # interpolate data
  140. # df_ego = self._csv_interpolate_by_frame(df_ego)
  141. # df_object = self._csv_interpolate_by_frame(df_object)
  142. # df_laneinfo = self._csv_interpolate_by_frame(df_laneinfo)
  143. # df_roadPos = self._csv_interpolate_by_frame(df_roadPos)
  144. # df_status = self._csv_interpolate_by_frame(df_status)
  145. # df_vehicleSys = self._csv_interpolate_by_frame(df_vehicleSys)
  146. EGO_PLAYER_ID = 1
  147. # 合并 ego_df 和 obj_df
  148. df_ego['playerId'] = EGO_PLAYER_ID
  149. combined_df = pd.concat([df_object, df_ego]).drop_duplicates(subset=['simTime', 'simFrame', 'playerId'])
  150. df_object = combined_df.sort_values(
  151. by=['simTime', 'simFrame', 'playerId']).copy() # 按照 simTime、simFrame 和 playerId 排序
  152. df_laneinfo['curvHor'] = df_laneinfo['curvHor'].round(3)
  153. df_laneinfo.rename(columns={"id": 'laneId'}, inplace=True)
  154. result = pd.merge(df_roadPos, df_laneinfo, how='inner', on=["simTime", "simFrame", "playerId", "laneId"])
  155. df_laneinfo_new = result[["simTime", "simFrame", "playerId", "curvHor", "curvHorDot"]].copy().drop_duplicates()
  156. # temperory code
  157. df_status.rename(columns={"ACC_state": 'ACC_status', "AEB_state": 'Aeb_status', "LKA_state": 'LKA_status'},
  158. inplace=True)
  159. # status mapping
  160. # df_status = self._status_mapping(df_status)
  161. df_status['ACC_status'] = df_status['ACC_status'].apply(lambda x: acc_status_mapping(x))
  162. df_status['Aeb_status'] = df_status['Aeb_status'].apply(lambda x: aeb_status_mapping(x))
  163. df_status['LKA_status'] = df_status['LKA_status'].apply(lambda x: lka_status_mapping(x))
  164. df_status['ICA_status'] = df_status['ICA_status'].apply(lambda x: ica_status_mapping(x))
  165. df_status['LDW_status'] = df_status['LDW_status'].apply(lambda x: ldw_status_mapping(x))
  166. df_status = df_status[['simTime', 'ACC_status', 'Aeb_status', 'LKA_status', 'ICA_status', 'LDW_status']].copy()
  167. df_roadPos = df_roadPos[["simTime", "simFrame", "playerId", "laneOffset", "rollRel", "pitchRel"]].copy()
  168. # df merge
  169. df_vehicleSys = df_vehicleSys[['simTime', 'simFrame', 'lightMask', 'steering']].copy()
  170. merged_df = pd.merge(df_object, df_vehicleSys, on=["simTime", "simFrame"], how="left")
  171. merged_df1 = pd.merge(merged_df, df_laneinfo_new, on=["simTime", "simFrame", "playerId"], how="left")
  172. merged_df1 = pd.merge(merged_df1, df_roadPos, on=["simTime", "simFrame", "playerId"], how="left")
  173. merged_df2 = pd.merge_asof(merged_df1, df_status, on="simTime", direction='nearest')
  174. mg_df = merged_df2.drop_duplicates()
  175. mg_df = mg_df[mg_df.simFrame > 0].copy()
  176. mg_df.to_csv(os.path.join(self.data_path, 'merged_ObjState.csv'), index=False)
  177. print('The files are merged.')
  178. def _read_csv(self):
  179. """
  180. Read csv files to dataframe.
  181. Args:
  182. data_path: A str of the path of csv files
  183. Returns:
  184. No returns.
  185. """
  186. self.driver_ctrl_df = pd.read_csv(os.path.join(self.data_path, 'DriverCtrl.csv')).drop_duplicates()
  187. self.ego_df = pd.read_csv(os.path.join(self.data_path, 'EgoState.csv')).drop_duplicates()
  188. # self.object_df = pd.read_csv(os.path.join(self.data_path, 'ObjState.csv'))
  189. self.object_df = pd.read_csv(os.path.join(self.data_path, 'merged_ObjState.csv')).drop_duplicates(
  190. subset=['simTime', 'simFrame', 'playerId'])
  191. self.road_mark_df = pd.read_csv(os.path.join(self.data_path, 'RoadMark.csv')).drop_duplicates()
  192. self.road_pos_df = pd.read_csv(os.path.join(self.data_path, 'RoadPos.csv')).drop_duplicates()
  193. self.traffic_light_df = pd.read_csv(os.path.join(self.data_path, 'TrafficLight.csv')).drop_duplicates()
  194. self.traffic_signal_df = pd.read_csv(os.path.join(self.data_path, 'TrafficSign.csv')).drop_duplicates()
  195. def _invalid_detect(self):
  196. # invalid detect
  197. self._invalid_column_detect(self.ego_df, 'EgoState.csv')
  198. self._invalid_column_detect(self.driver_ctrl_df, 'DriverCtrl.csv')
  199. self._invalid_column_detect(self.road_mark_df, 'RoadMark.csv')
  200. self._invalid_column_detect(self.road_pos_df, 'RoadPos.csv')
  201. self._invalid_column_detect(self.traffic_light_df, 'TrafficLight.csv')
  202. self._invalid_column_detect(self.traffic_signal_df, 'TrafficSign.csv')
  203. def _time_alignment(self):
  204. base_time = self.ego_df['simTime'].unique()
  205. self.driver_ctrl_df = self._data_time_align(base_time, self.driver_ctrl_df)
  206. self.ego_df = self._data_time_align(base_time, self.ego_df)
  207. self.object_df = self._data_time_align(base_time, self.object_df)
  208. self.road_mark_df = self._data_time_align(base_time, self.road_mark_df)
  209. self.road_pos_df = self._data_time_align(base_time, self.road_pos_df)
  210. self.traffic_light_df = self._data_time_align(base_time, self.traffic_light_df)
  211. self.traffic_signal_df = self._data_time_align(base_time, self.traffic_signal_df)
  212. print("The data is aligned.")
  213. # interpolate data
  214. # self.driver_ctrl_df = self._csv_interpolate_by_frame(self.driver_ctrl_df)
  215. # self.ego_df = self._csv_interpolate_by_frame(self.ego_df)
  216. # self.object_df = self._csv_interpolate_by_frame(self.object_df)
  217. # self.road_mark_df = self._csv_interpolate_by_frame(self.road_mark_df)
  218. # self.road_pos_df = self._csv_interpolate_by_frame(self.road_pos_df)
  219. # self.traffic_light_df = self._csv_interpolate_by_frame(self.traffic_light_df)
  220. # self.traffic_signal_df = self._csv_interpolate_by_frame(self.traffic_signal_df)
  221. def _signal_mapping(self):
  222. pass
  223. # singal mapping
  224. # signal_json = r'./signal.json'
  225. # signal_dict = json2dict(signal_json)
  226. # df_objectstate = signal_name_map(df_objectstate, signal_dict, 'objectState')
  227. # df_roadmark = signal_name_map(df_roadmark, signal_dict, 'roadMark')
  228. # df_roadpos = signal_name_map(df_roadpos, signal_dict, 'roadPos')
  229. # df_trafficlight = signal_name_map(df_trafficlight, signal_dict, 'trafficLight')
  230. # df_trafficsignal = signal_name_map(df_trafficsignal, signal_dict, 'trafficSignal')
  231. # df_drivectrl = signal_name_map(df_drivectrl, signal_dict, 'driverCtrl')
  232. # df_laneinfo = signal_name_map(df_laneinfo, signal_dict, 'laneInfo')
  233. # df_status = signal_name_map(df_status, signal_dict, 'statusMachine')
  234. # df_vehiclesys = signal_name_map(df_vehiclesys, signal_dict, 'vehicleSys')
  235. def _get_car_info(self, df):
  236. """
  237. Args:
  238. df:
  239. Returns:
  240. """
  241. EGO_PLAYER_ID = 1
  242. first_row = df[df['playerId'] == EGO_PLAYER_ID].iloc[0].to_dict()
  243. length = first_row['dimX']
  244. width = first_row['dimY']
  245. height = first_row['dimZ']
  246. offset = first_row['offX']
  247. car_info = {
  248. "length": length,
  249. "width": width,
  250. "height": height,
  251. "offset": offset
  252. }
  253. return car_info
  254. def _compact_data(self):
  255. """
  256. Extra necessary data from dataframes.
  257. Returns:
  258. """
  259. self.object_df = self.object_df[CsvData.OBJECT_INFO].copy()
  260. def _abnormal_detect(self): # head and tail detect
  261. """
  262. Detect the head of the csv whether begin with 0 or not.
  263. Returns:
  264. A dataframe, which 'time' column begin with 0.
  265. """
  266. pass
  267. def _object_df_process(self):
  268. """
  269. Process the data of object dataframe. Save the data groupby object_ID.
  270. Returns:
  271. No returns.
  272. """
  273. EGO_PLAYER_ID = 1
  274. data = self.object_df.copy()
  275. # calculate common parameters
  276. data['lat_v'] = data['speedY'] * 1
  277. data['lon_v'] = data['speedX'] * 1
  278. data['v'] = data.apply(lambda row: cal_velocity(row['lat_v'], row['lon_v']), axis=1)
  279. data['v'] = data['v'] # km/h
  280. # calculate acceleraton components
  281. data['lat_acc'] = data['accelY'] * 1
  282. data['lon_acc'] = data['accelX'] * 1
  283. data['accel'] = data.apply(lambda row: cal_velocity(row['lat_acc'], row['lon_acc']), axis=1)
  284. self.object_df = data.copy()
  285. # calculate respective parameters
  286. for obj_id, obj_data in data.groupby("playerId"):
  287. self.obj_data[obj_id] = obj_data
  288. self.obj_data[obj_id]['lat_acc_diff'] = self.obj_data[obj_id]['lat_acc'].diff()
  289. self.obj_data[obj_id]['lon_acc_diff'] = self.obj_data[obj_id]['lon_acc'].diff()
  290. self.obj_data[obj_id]['yawrate_diff'] = self.obj_data[obj_id]['speedH'].diff()
  291. self.obj_data[obj_id]['time_diff'] = self.obj_data[obj_id]['simTime'].diff()
  292. self.obj_data[obj_id]['lat_acc_roc'] = self.obj_data[obj_id]['lat_acc_diff'] / self.obj_data[obj_id][
  293. 'time_diff']
  294. self.obj_data[obj_id]['lon_acc_roc'] = self.obj_data[obj_id]['lon_acc_diff'] / self.obj_data[obj_id][
  295. 'time_diff']
  296. self.obj_data[obj_id]['accelH'] = self.obj_data[obj_id]['yawrate_diff'] / self.obj_data[obj_id][
  297. 'time_diff']
  298. # get object id list
  299. self.obj_id_list = list(self.obj_data.keys())
  300. self.ego_data = self.obj_data[EGO_PLAYER_ID]
  301. def _mileage_cal(self, df1):
  302. """
  303. Calculate mileage of given df.
  304. Args:
  305. df1: A dataframe of driving data.
  306. Returns:
  307. mileage: A float of the mileage(meter) of the driving data.
  308. """
  309. df = df1.copy()
  310. # if 9999.00 in df['travelDist'].values or "9999.00" in df['travelDist'].values:
  311. if df['travelDist'].nunique() == 1:
  312. df['time_diff'] = df['simTime'].diff() # 计算时间间隔
  313. df['avg_speed'] = (df['v'] + df['v'].shift()) / 2 # 计算每个时间间隔的平均速度
  314. df['distance_increment'] = df['avg_speed'] * df['time_diff'] / 3.6 # 计算每个时间间隔的距离增量
  315. # 计算当前里程
  316. df['travelDist'] = df['distance_increment'].cumsum()
  317. df['travelDist'] = df['travelDist'].fillna(0)
  318. mile_start = df['travelDist'].iloc[0]
  319. mile_end = df['travelDist'].iloc[-1]
  320. mileage = round(mile_end - mile_start, 2)
  321. return mileage
  322. def _duration_cal(self, df):
  323. """
  324. Calculate duration of given df.
  325. Args:
  326. df: A dataframe of driving data.
  327. Returns:
  328. duration: A float of the duration(second) of the driving data.
  329. """
  330. time_start = df['simTime'].iloc[0]
  331. time_end = df['simTime'].iloc[-1]
  332. duration = time_end - time_start
  333. return duration
  334. def _get_report_info(self, df):
  335. """
  336. Get report infomation from dataframe.
  337. Args:
  338. df: A dataframe of driving data.
  339. Returns:
  340. report_info: A dict of report infomation.
  341. """
  342. mileage = self._mileage_cal(df)
  343. duration = self._duration_cal(df)
  344. report_info = {
  345. "mileage": mileage,
  346. "duration": duration
  347. }
  348. return report_info
  349. def _status_mapping(self, df):
  350. # df['Abpb_status'] = df['Abpb_status'].apply(lambda x: abpb_status_mapping(x))
  351. df['ACC_status'] = df['ACC_status'].apply(lambda x: acc_status_mapping(x))
  352. df['Aeb_status'] = df['Aeb_status'].apply(lambda x: aeb_status_mapping(x))
  353. # df['Awb_status'] = df['Awb_status'].apply(lambda x: ldw_status_mapping(x))
  354. # df['DOW_status'] = df['DOW_status'].apply(lambda x: ldw_status_mapping(x))
  355. # df['Eba_status'] = df['Eba_status'].apply(lambda x: ldw_status_mapping(x))
  356. # df['ELK_status'] = df['ELK_status'].apply(lambda x: ldw_status_mapping(x))
  357. # df['ESA_status'] = df['ESA_status'].apply(lambda x: ldw_status_mapping(x))
  358. # df['Fcw_status'] = df['Fcw_status'].apply(lambda x: ldw_status_mapping(x))
  359. df['ICA_status'] = df['ICA_status'].apply(lambda x: ica_status_mapping(x))
  360. # df['ISLC_status'] = df['ISLC_status'].apply(lambda x: ldw_status_mapping(x))
  361. # df['JA_status'] = df['JA_status'].apply(lambda x: ldw_status_mapping(x))
  362. df['LKA_status'] = df['LKA_status'].apply(lambda x: lka_status_mapping(x))
  363. df['LDW_status'] = df['LDW_status'].apply(lambda x: ldw_status_mapping(x))
  364. # df['NOA_status'] = df['NOA_status'].apply(lambda x: ldw_status_mapping(x))
  365. # df['RCW_status'] = df['RCW_status'].apply(lambda x: ldw_status_mapping(x))
  366. # df['TLC_status'] = df['TLC_status'].apply(lambda x: ldw_status_mapping(x))
  367. # df['FVSR_status'] = df['FVSR_status'].apply(lambda x: ldw_status_mapping(x))
  368. # df['BSD_status'] = df['BSD_status'].apply(lambda x: ldw_status_mapping(x))
  369. # df['RCTA_status'] = df['RCTA_status'].apply(lambda x: ldw_status_mapping(x))
  370. # df['FCTA_status'] = df['FCTA_status'].apply(lambda x: ldw_status_mapping(x))
  371. # df['ISA_status'] = df['ISA_status'].apply(lambda x: ldw_status_mapping(x))
  372. # df['TSR_status'] = df['TSR_status'].apply(lambda x: ldw_status_mapping(x))
  373. # df['AVM_status'] = df['AVM_status'].apply(lambda x: ldw_status_mapping(x))
  374. # df['PDC_status'] = df['PDC_status'].apply(lambda x: ldw_status_mapping(x))
  375. # df['APA_status'] = df['APA_status'].apply(lambda x: ldw_status_mapping(x))
  376. # df['MEB_status'] = df['MEB_status'].apply(lambda x: ldw_status_mapping(x))
  377. # df['RDA_status'] = df['RDA_status'].apply(lambda x: ldw_status_mapping(x))
  378. def _get_driver_ctrl_data(self, df):
  379. """
  380. Process and get drive ctrl information. Such as brake pedal, throttle pedal and steering wheel.
  381. Args:
  382. df: A dataframe of driver ctrl data.
  383. Returns:
  384. driver_ctrl_data: A dict of driver ctrl info.
  385. """
  386. time_list = df['simTime'].round(2).values.tolist()
  387. frame_list = df['simFrame'].values.tolist()
  388. df['brakePedal'] = df['brakePedal'] * 100
  389. brakePedal_list = df['brakePedal'].values.tolist()
  390. df['throttlePedal'] = df['throttlePedal'] * 100
  391. throttlePedal_list = df['throttlePedal'].values.tolist()
  392. steeringWheel_list = df['steeringWheel'].values.tolist()
  393. driver_ctrl_data = {
  394. "time_list": time_list,
  395. "frame_list": frame_list,
  396. "brakePedal_list": brakePedal_list,
  397. "throttlePedal_list": throttlePedal_list,
  398. "steeringWheel_list": steeringWheel_list
  399. }
  400. return driver_ctrl_data
  401. class StatusTime(object):
  402. """
  403. # 调用方式:使用isin()方法来筛选DataFrame中simTime列与time_list中值一致的行
  404. filtered_df = df[df['simTime'].isin(self.status_time_dict['ACC_status'])]
  405. """
  406. def __init__(self, status_df):
  407. self.status_df = status_df
  408. self.status_list = []
  409. self.no_status_time_list = []
  410. self.status_time_dict = {}
  411. self._run()
  412. def _get_status_list(self):
  413. status_columns_list = self.status_df.columns.tolist()
  414. self.status_list = [x for x in status_columns_list if x not in ['simTime', 'simFrame']]
  415. def _get_no_status_time_list(self):
  416. # 筛选出所有状态机列值都为0的行
  417. filtered_rows = self.status_df[self.status_df[self.status_list].eq(0).all(axis=1)]
  418. # 将筛选后的simTime列的值作为列表输出
  419. self.no_status_time_list = filtered_rows['simTime'].tolist()
  420. def _get_status_time_dict(self):
  421. for status in self.status_list:
  422. status_time = self.status_df[self.status_df[status] != 0]['simTime'].values.tolist()
  423. self.status_time_dict[status] = status_time
  424. self.status_time_dict['no_status'] = self.no_status_time_list
  425. def _run(self):
  426. self._get_status_list()
  427. self._get_no_status_time_list()
  428. self._get_status_time_dict()