cicv_ica_longitudinal_control04_overshoot_cruise.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen, yangzihao
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. """
  17. import math
  18. import pandas as pd
  19. import numpy as np
  20. from common import zip_time_pairs, continuous_group
  21. from log import logger
  22. """import functions"""
  23. # custom metric codes
  24. class CustomMetric(object):
  25. def __init__(self, all_data, case_name):
  26. self.data = all_data
  27. self.optimal_dict = self.data.config
  28. self.case_name = case_name
  29. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  30. self.graph_list = []
  31. self.df = pd.DataFrame()
  32. self.ego_df = pd.DataFrame()
  33. self.df_ica = pd.DataFrame()
  34. self.stable_average_speed = None
  35. self.overshoot_cruise = None
  36. self.result = {
  37. "name": "定速巡航超调量",
  38. "value": [],
  39. # "weight": [],
  40. "tableData": {
  41. "avg": "", # 平均值,或指标值
  42. "max": "",
  43. "min": ""
  44. },
  45. "reportData": {
  46. "name": "定速巡航超调量(%)",
  47. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  48. "data": [],
  49. "markLine": [],
  50. "range": [],
  51. },
  52. "statusFlag": {}
  53. }
  54. self.run()
  55. print(f"定速巡航超调量: {self.result['value']}")
  56. def data_extract(self):
  57. self.df = self.data.object_df
  58. self.ego_df = self.data.ego_data
  59. self.df_ica = self.ego_df[self.ego_df['ICA_status'] == "Only_Longitudinal_Control"].copy() # 数字3对应ICA的Active
  60. # self.df_ica = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  61. # self.df_ica = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  62. if self.df_ica.empty:
  63. self.result['statusFlag']['function_ICA'] = False
  64. else:
  65. self.result['statusFlag']['function_ICA'] = True
  66. def _get_first_change_index_cruise(self):
  67. """
  68. 获取数据集中第一次巡航速度发生变化的索引。
  69. Args:
  70. 无参数。
  71. Returns:
  72. Union[int, None]: 如果存在巡航速度发生变化的索引,则返回第一个发生变化的索引(int类型);
  73. 如果不存在,则返回None。
  74. """
  75. change_indices = self.df_ica[self.df_ica['set_cruise_speed'] != self.df_ica['set_cruise_speed'].shift()].index
  76. if not change_indices.empty:
  77. first_change_index = change_indices.min()
  78. else:
  79. first_change_index = None
  80. return first_change_index
  81. def _find_stable_speed_cruise(self, window_size, percent_deviation, set_value):
  82. """
  83. 在给定的速度数据中查找稳定的巡航速度段,并计算该段的平均速度。
  84. Args:
  85. window_size (int): 滑动窗口的大小,表示用于计算平均速度的速度数据点数量。
  86. percent_deviation (float): 设定值的允许偏差百分比。
  87. set_value (float): 期望的稳定速度设定值。
  88. Returns:
  89. None
  90. """
  91. # speed_data = self.df['speedX'].values
  92. speed_data = self.df_ica['speedX'].values # .tolist()
  93. deviation = set_value * (percent_deviation / 100)
  94. stable_start = None
  95. stable_average_speed = None
  96. for i in range(len(speed_data) - window_size + 1):
  97. window_data = speed_data[i:i + window_size]
  98. if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
  99. if stable_start is None:
  100. stable_start = i
  101. stable_end = i + window_size - 1
  102. stable_average_speed = np.mean(window_data)
  103. j = i + window_size
  104. while j < len(speed_data) - window_size + 1:
  105. next_window_data = speed_data[j:j + window_size]
  106. if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
  107. stable_end = j + window_size - 1
  108. stable_average_speed = (stable_average_speed * (j - stable_start) + sum(next_window_data)) / (
  109. j - stable_start + window_size)
  110. j += window_size
  111. else:
  112. stable_start = j + window_size - 1
  113. stable_end = i + window_size - 1
  114. stable_average_speed = np.mean(window_data)
  115. break
  116. # self.stable_start_time_cruise = self.df['simTime'].iloc[stable_start]
  117. self.stable_average_speed = stable_average_speed
  118. def data_analyze(self):
  119. first_change_index = self._get_first_change_index_cruise()
  120. set_cruise_speed = self.df_ica.loc[first_change_index, 'set_cruise_speed']
  121. self._find_stable_speed_cruise(window_size=4, percent_deviation=5, set_value=set_cruise_speed)
  122. if not first_change_index:
  123. self.overshoot_cruise = 0
  124. else:
  125. initial_speed = self.df.loc[first_change_index, 'speedX']
  126. if initial_speed > self.stable_average_speed:
  127. self.overshoot_cruise = (self.stable_average_speed - self.df[
  128. 'speedX'].min()) * 100 / self.stable_average_speed
  129. elif initial_speed < self.stable_average_speed:
  130. self.overshoot_cruise = (self.df[
  131. 'speedX'].max() - self.stable_average_speed) * 100 / self.stable_average_speed
  132. else:
  133. self.overshoot_cruise = 0
  134. self.result['value'] = [round(self.overshoot_cruise, 3)]
  135. print(f"overshoot_cruise: {self.overshoot_cruise}")
  136. def markline_statistic(self):
  137. pass
  138. def report_data_statistic(self):
  139. # time_list = self.ego_df['simTime'].values.tolist()
  140. # graph_list = [x for x in self.graph_list if not np.isnan(x)]
  141. self.result['tableData']['avg'] = self.result['value'][0] if not self.df_ica.empty else '-'
  142. self.result['tableData']['max'] = '-'
  143. self.result['tableData']['min'] = '-'
  144. # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
  145. self.result['reportData']['data'] = []
  146. # self.markline_statistic()
  147. # markline_slices = self.markline_df.to_dict('records')
  148. self.result['reportData']['markLine'] = []
  149. self.result['reportData']['range'] = [0, 1.2]
  150. def run(self):
  151. # logger.info(f"Custom metric run:[{self.result['name']}].")
  152. logger.info(f"[case:{self.case_name}] Custom metric:[overshoot_cruise:{self.result['name']}] evaluate.")
  153. try:
  154. self.data_extract()
  155. except Exception as e:
  156. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  157. try:
  158. self.data_analyze()
  159. except Exception as e:
  160. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  161. try:
  162. self.report_data_statistic()
  163. except Exception as e:
  164. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  165. # if __name__ == "__main__":
  166. # pass