123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: zhangyu
- @Data: 2024/02/21
- @Last Modified: 2024/02/21
- @Summary: The template of custom indicator.
- """
- """
- 设计思路:
- 最大横向偏移量
- zy_center_distance_expectation
- """
- import math
- import pandas as pd
- import numpy as np
- from common import zip_time_pairs, continuous_group
- from log import logger
- """import functions"""
- # custom metric codes
- class CustomMetric(object):
- def __init__(self, all_data, case_name):
- self.data = all_data
- self.optimal_dict = self.data.config
- self.case_name = case_name
- self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
- self.df = pd.DataFrame()
- self.ego_df = pd.DataFrame()
- self.df_follow = pd.DataFrame()
- self.roadMark_df = pd.DataFrame()
- self.roadPos_df = pd.DataFrame()
- self.time_list_follow = list()
- self.frame_list_follow = list()
- self.dist_list = list()
- self.dist_deviation_list = list()
- self.dist_deviation_list_full_time = list()
- self.result = {
- "name": "最大横向偏移量",
- "value": [],
- # "weight": [],
- "tableData": {
- "avg": "", # 平均值,或指标值
- "max": "",
- "min": ""
- },
- "reportData": {
- "name": "最大横向偏移量(m)",
- # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
- "data": [],
- "markLine": [],
- "range": [],
- },
- "statusFlag": {}
- }
- self.run()
- print(f"指标02: 最大横向偏移量: {self.result['value']}")
- def data_extract(self):
- self.df = self.data.object_df
- self.ego_df = self.data.object_df[self.data.object_df.playerId == 1]
- self.df_follow = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
- # self.df_follow = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
- self.roadMark_df = self.data.road_mark_df
- self.roadPos_df = self.data.road_pos_df
- if self.roadMark_df.empty:
- self.result['statusFlag']['function_LKA'] = False
- else:
- self.result['statusFlag']['function_LKA'] = True
- def dist(self, x1, y1, x2, y2):
- dis = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
- return dis
- def Compute_nearby_distance_to_lane_boundary(self, x, width_ego):
- if x.lateralDist < abs(x.right_lateral_distance):
- return x.lateralDist - width_ego/2
- else:
- return abs(x.right_lateral_distance) - width_ego/2
- def func_laneOffset_abs(self, x):
- return abs(x.laneOffset)
- def data_analyze(self):
- # 提取自车宽度
- roadPos_df = self.roadPos_df
- # 提取距离左车道线和右车道线距离
- roadPos_ego_df = roadPos_df[roadPos_df.playerId == 1].reset_index(drop=True)
- # # 计算到车道边界线距离
- roadPos_ego_df['laneOffset_abs'] = roadPos_ego_df.apply(lambda x: self.func_laneOffset_abs(x), axis=1)
- max_laneOffset_abs_index = roadPos_ego_df['laneOffset_abs'].idxmax()
- row_with_max_value = roadPos_ego_df.iloc[max_laneOffset_abs_index].laneOffset
- self.result['value'] = [row_with_max_value]
- self.time_list_follow = roadPos_ego_df['simTime'].values.tolist()
- self.frame_list_follow = roadPos_ego_df['simFrame'].values.tolist()
- self.dist_deviation_list = roadPos_ego_df['laneOffset'].values.tolist()
- def markline_statistic(self):
- unfunc_df = pd.DataFrame({'simTime': self.time_list_follow, 'simFrame': self.frame_list_follow,
- 'dist_deviation': self.dist_deviation_list})
- unfunc_df = unfunc_df[unfunc_df['simFrame'] > 1]
- # v_df = unfunc_df[unfunc_df['dist_deviation'] > 0]
- v_df = unfunc_df
- v_df = v_df[['simTime', 'simFrame', 'dist_deviation']]
- v_follow_df = continuous_group(v_df)
- v_follow_df['type'] = "ICA"
- self.markline_df = pd.concat([self.markline_df, v_follow_df], ignore_index=True)
- def report_data_statistic(self):
- time_list = self.ego_df['simTime'].values.tolist()
- graph_list = [x for x in self.dist_deviation_list if not np.isnan(x)]
- self.result['tableData']['avg'] = f'{np.mean(graph_list):.2f}' if graph_list else 0
- self.result['tableData']['max'] = f'{max(graph_list):.2f}' if graph_list else 0
- self.result['tableData']['min'] = f'{min(graph_list):.2f}' if graph_list else 0
- zip_vs_time = zip_time_pairs(time_list, self.dist_deviation_list)
- self.result['reportData']['data'] = zip_vs_time
- self.markline_statistic()
- markline_slices = self.markline_df.to_dict('records')
- # self.result['reportData']['markLine'] = markline_slices
- self.result['reportData']['range'] = f"[-1.875, 1.875]"
- def run(self):
- # logger.info(f"Custom metric run:[{self.result['name']}].")
- logger.info(f"[case:{self.case_name}] Custom metric:[ica_distance_deviation:{self.result['name']}] evaluate.")
- try:
- self.data_extract()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
- try:
- self.data_analyze()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
- try:
- self.report_data_statistic()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
- # if __name__ == "__main__":
- # pass
|