123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: yangzihao(yangzihao@china-icv.cn)
- @Data: 2024/02/21
- @Last Modified: 2024/02/21
- @Summary: The template of custom indicator.
- """
- import math
- import pandas as pd
- import numpy as np
- from common import zip_time_pairs, continuous_group
- from log import logger
- """import functions"""
- # def zip_time_pairs(time_list, zip_list):
- # zip_time_pairs = zip(time_list, zip_list)
- # zip_vs_time = [[x, y] for x, y in zip_time_pairs if not math.isnan(y)]
- # return zip_vs_time
- # def continuous_group(df):
- # time_list = df['simTime'].values.tolist()
- # frame_list = df['simFrame'].values.tolist()
- #
- # group_time = []
- # group_frame = []
- # sub_group_time = []
- # sub_group_frame = []
- #
- # for i in range(len(frame_list)):
- # if not sub_group_time or frame_list[i] - frame_list[i - 1] <= 1:
- # sub_group_time.append(time_list[i])
- # sub_group_frame.append(frame_list[i])
- # else:
- # group_time.append(sub_group_time)
- # group_frame.append(sub_group_frame)
- # sub_group_time = [time_list[i]]
- # sub_group_frame = [frame_list[i]]
- #
- # group_time.append(sub_group_time)
- # group_frame.append(sub_group_frame)
- # group_time = [g for g in group_time if len(g) >= 2]
- # group_frame = [g for g in group_frame if len(g) >= 2]
- #
- # # 输出图表值
- # time = [[g[0], g[-1]] for g in group_time]
- # frame = [[g[0], g[-1]] for g in group_frame]
- #
- # time_df = pd.DataFrame(time, columns=['start_time', 'end_time'])
- # frame_df = pd.DataFrame(frame, columns=['start_frame', 'end_frame'])
- #
- # result_df = pd.concat([time_df, frame_df], axis=1)
- #
- # return result_df
- # def continous_judge(frame_list):
- # if not frame_list:
- # return 0
- #
- # cnt = 1
- # for i in range(1, len(frame_list)):
- # if frame_list[i] - frame_list[i - 1] <= 3:
- # continue
- # cnt += 1
- # return cnt
- # custom metric codes
- class CustomMetric(object):
- def __init__(self, all_data, case_name):
- self.data = all_data
- self.optimal_dict = self.data.config
- self.case_name = case_name
- self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
- self.df = pd.DataFrame()
- self.df_follow = pd.DataFrame()
- self.time_list_follow = list()
- self.frame_list_follow = list()
- self.dist_list = list()
- self.dist_deviation_list = list()
- self.dist_deviation_list_full_time = list()
- self.result = {
- "name": "跟车距离偏差",
- "value": [],
- # "weight": [],
- "tableData": {
- "avg": "", # 平均值,或指标值
- "max": "",
- "min": ""
- },
- "reportData": {
- "name": "跟车距离偏差(s)",
- # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
- "data": [],
- "markLine": [],
- "range": [],
- },
- "statusFlag": {}
- }
- self.run()
- def data_extract(self):
- self.df = self.data.object_df
- self.df_follow = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
- # self.df_follow = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
- if self.df_follow.empty:
- self.result['statusFlag']['functionICA'] = False
- else:
- self.result['statusFlag']['functionICA'] = True
- def dist(self, x1, y1, x2, y2):
- dis = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
- return dis
- def data_analyze(self):
- df = self.df_follow.copy()
- col_list = ['simTime', 'simFrame', 'playerId', 'v', 'posX', 'posY'] # target_id
- df = df[col_list].copy()
- ego_df = df[df['playerId'] == 1][['simTime', 'simFrame', 'v', 'posX', 'posY']]
- # 筛选目标车(同一车道内,距离最近的前车)
- # obj_df = df[df['playerId'] == df['target_id']]
- target_id = 2
- obj_df = df[df['playerId'] == target_id][['simTime', 'simFrame', 'v', 'posX', 'posY']] # 目标车
- obj_df = obj_df.rename(columns={'v': 'v_obj', 'posX': 'posX_obj', 'posY': 'posY_obj'})
- df_merge = pd.merge(ego_df, obj_df, on=['simTime', 'simFrame'], how='left')
- df_merge['dist'] = df_merge.apply(
- lambda row: self.dist(row['posX'], row['posY'], row['posX_obj'], row['posY_obj']), axis=1)
- self.dist_list = df_merge['dist'].values.tolist()
- df_merge['time_gap'] = df_merge['dist'] / df_merge['v']
- safe_time_gap = 3
- df_merge['dist_deviation'] = df_merge['time_gap'].apply(
- lambda x: 0 if (x >= safe_time_gap) else (safe_time_gap - x))
- df_merge.replace([np.inf, -np.inf], np.nan, inplace=True) # 异常值处理
- self.time_list_follow = df_merge['simTime'].values.tolist()
- self.frame_list_follow = df_merge['simFrame'].values.tolist()
- self.dist_deviation_list = df_merge['dist_deviation'].values.tolist()
- tmp_df = ego_df[['simTime', 'simFrame']].copy()
- dist_deviation_df = df_merge[['simTime', 'dist_deviation']].copy()
- df_merged1 = pd.merge(tmp_df, dist_deviation_df, on='simTime', how='left')
- self.dist_deviation_list_full_time = df_merged1['dist_deviation'].values.tolist()
- distance_deviation = df_merge['dist_deviation'].max()
- self.result['value'] = [round(distance_deviation, 2)] if not np.isnan(distance_deviation) else [0]
- def markline_statistic(self):
- unfunc_df = pd.DataFrame({'simTime': self.time_list_follow, 'simFrame': self.frame_list_follow,
- 'dist_deviation': self.dist_deviation_list})
- unfunc_df = unfunc_df[unfunc_df['simFrame'] > 1]
- v_df = unfunc_df[unfunc_df['dist_deviation'] > 10]
- v_df = v_df[['simTime', 'simFrame', 'dist_deviation']]
- v_follow_df = continuous_group(v_df)
- v_follow_df['type'] = "ICA"
- self.markline_df = pd.concat([self.markline_df, v_follow_df], ignore_index=True)
- def report_data_statistic(self):
- time_list = self.df['simTime'].values.tolist()
- graph_list = [x for x in self.dist_deviation_list if not np.isnan(x)]
- self.result['tableData']['avg'] = f'{np.mean(graph_list):.2f}' if graph_list else '-'
- self.result['tableData']['max'] = f'{max(graph_list):.2f}' if graph_list else '-'
- self.result['tableData']['min'] = f'{min(graph_list):.2f}' if graph_list else '-'
- zip_vs_time = zip_time_pairs(time_list, self.dist_deviation_list_full_time)
- self.result['reportData']['data'] = zip_vs_time
- self.markline_statistic()
- markline_slices = self.markline_df.to_dict('records')
- self.result['reportData']['markLine'] = markline_slices
- self.result['reportData']['range'] = f"[0, 10]"
- def run(self):
- # logger.info(f"Custom metric run:[{self.result['name']}].")
- logger.info(f"[case:{self.case_name}] Custom metric:[ica_distance_deviation:{self.result['name']}] evaluate.")
- try:
- self.data_extract()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
- try:
- self.data_analyze()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
- try:
- self.report_data_statistic()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
- # if __name__ == "__main__":
- # pass
|