123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: yangzihao(yangzihao@china-icv.cn)
- @Data: 2024/02/21
- @Last Modified: 2024/02/21
- @Summary: The template of custom indicator.
- """
- import math
- import pandas as pd
- import numpy as np
- from common import zip_time_pairs, continuous_group
- from log import logger
- """import functions"""
- # def zip_time_pairs(time_list, zip_list):
- # zip_time_pairs = zip(time_list, zip_list)
- # zip_vs_time = [[x, y] for x, y in zip_time_pairs if not math.isnan(y)]
- # return zip_vs_time
- # def continuous_group(df):
- # time_list = df['simTime'].values.tolist()
- # frame_list = df['simFrame'].values.tolist()
- #
- # group_time = []
- # group_frame = []
- # sub_group_time = []
- # sub_group_frame = []
- #
- # for i in range(len(frame_list)):
- # if not sub_group_time or frame_list[i] - frame_list[i - 1] <= 1:
- # sub_group_time.append(time_list[i])
- # sub_group_frame.append(frame_list[i])
- # else:
- # group_time.append(sub_group_time)
- # group_frame.append(sub_group_frame)
- # sub_group_time = [time_list[i]]
- # sub_group_frame = [frame_list[i]]
- #
- # group_time.append(sub_group_time)
- # group_frame.append(sub_group_frame)
- # group_time = [g for g in group_time if len(g) >= 2]
- # group_frame = [g for g in group_frame if len(g) >= 2]
- #
- # # 输出图表值
- # time = [[g[0], g[-1]] for g in group_time]
- # frame = [[g[0], g[-1]] for g in group_frame]
- #
- # time_df = pd.DataFrame(time, columns=['start_time', 'end_time'])
- # frame_df = pd.DataFrame(frame, columns=['start_frame', 'end_frame'])
- #
- # result_df = pd.concat([time_df, frame_df], axis=1)
- #
- # return result_df
- # def continous_judge(frame_list):
- # if not frame_list:
- # return 0
- #
- # cnt = 1
- # for i in range(1, len(frame_list)):
- # if frame_list[i] - frame_list[i - 1] <= 3:
- # continue
- # cnt += 1
- # return cnt
- # custom metric codes
- class CustomMetric(object):
- def __init__(self, all_data, case_name):
- self.data = all_data
- self.optimal_dict = self.data.config
- self.case_name = case_name
- self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
- self.df = pd.DataFrame()
- self.df_stop_and_go = pd.DataFrame()
- self.time_list_follow = list()
- self.frame_list_follow = list()
- self.follow_stop_time_start_list = list()
- self.result = {
- "name": "跟车启动响应时间",
- "value": [],
- # "weight": [],
- "tableData": {
- "avg": "", # 平均值,或指标值
- "max": "",
- "min": ""
- },
- "reportData": {
- "name": "跟车启动响应时间(s)",
- # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
- "data": [],
- "markLine": [],
- "range": [],
- },
- "statusFlag": {}
- }
- self.run()
- def data_extract(self):
- self.df = self.data.object_df
- self.df_stop_and_go = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
- # self.df_stop_and_go = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
- if self.df_stop_and_go.empty:
- self.result['statusFlag']['functionICA'] = False
- else:
- self.result['statusFlag']['functionICA'] = True
- def data_analyze(self):
- df = self.df_stop_and_go.copy()
- stop_v_threshold = 0.05
- df['v'] = df['v'].apply(lambda x: 0 if x <= stop_v_threshold else 1) # 区分速度为0或非0
- target_id = 2
- df_ego = df[df['playerId'] == 1].copy()
- df_obj = df[df['playerId'] == target_id].copy() # 目标车
- df_obj_time = df_obj['simTime'].values.tolist()
- df_ego = df_ego[df_ego['simTime'].isin(df_obj_time)].copy()
- df_ego = df_ego.drop_duplicates(["simTime", "simFrame"])
- df_obj = df_obj.drop_duplicates(["simTime", "simFrame"])
- df_ego['v_diff'] = df_ego['v'].diff()
- df_ego['v_start_flag'] = df_ego['v_diff'].apply(lambda x: 1 if x == 1 else 0) # 起步即为1
- df_ego['v_stop_flag'] = df_ego['v_diff'].apply(lambda x: 1 if x == -1 else 0) # 停车即为-1
- df_obj['v_diff'] = df_obj['v'].diff()
- obj_v_start_flag = df_obj['v_diff'].apply(lambda x: 1 if x == 1 else 0).values # 起步即为1
- obj_v_stop_flag = df_obj['v_diff'].apply(lambda x: 1 if x == -1 else 0).values # 停车即为1
- df_ego['obj_v_start_flag'] = obj_v_start_flag
- df_ego['obj_v_stop_flag'] = obj_v_stop_flag
- df_ego['flag_start'] = df_ego['obj_v_start_flag'] - df_ego['v_start_flag'] # 目标车起步即为1,自车起步即为-1
- df_ego['flag_stop'] = df_ego['obj_v_stop_flag'] - df_ego['v_stop_flag'] # 目标车停车即为1,自车停车即为-1
- flag_start_list = df_ego['flag_start'].values
- flag_stop_list = df_ego['flag_stop'].values
- time_list = df_ego['simTime'].values
- time_start_list = []
- time_stop_list = []
- for i, flag in enumerate(flag_start_list):
- if flag:
- t1 = time_list[i]
- if flag == -1:
- t2 = time_list[i]
- time_start_list.append(t2 - t1) # t2-t1即为自车起步响应时间
- for i, flag in enumerate(flag_stop_list):
- if flag:
- t1 = time_list[i]
- if flag == -1:
- t2 = time_list[i]
- time_stop_list.append(t2 - t1) # t2-t1即为自车停车响应时间
- time_start_list = [i for i in time_start_list if i != 0]
- followResponseTime = max(time_start_list) if time_start_list else 0
- self.follow_stop_time_start_list = time_start_list
- self.result['value'] = [round(followResponseTime, 2)] if not np.isnan(followResponseTime) else [0]
- def markline_statistic(self):
- pass
- def report_data_statistic(self):
- # time_list = self.df['simTime'].values.tolist()
- graph_list = [x for x in self.follow_stop_time_start_list if not np.isnan(x)]
- self.result['tableData']['avg'] = f'{np.mean(graph_list):.2f}' if graph_list else '-'
- self.result['tableData']['max'] = f'{max(graph_list):.2f}' if graph_list else '-'
- self.result['tableData']['min'] = f'{min(graph_list):.2f}' if graph_list else '-'
- self.result['reportData']['data'] = []
- self.markline_statistic()
- self.result['reportData']['markLine'] = []
- self.result['reportData']['range'] = []
- def run(self):
- # logger.info(f"Custom metric run:[{self.result['name']}].")
- logger.info(f"[case:{self.case_name}] Custom metric:[ica_distance_deviation:{self.result['name']}] evaluate.")
- try:
- self.data_extract()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
- try:
- self.data_analyze()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
- try:
- self.report_data_statistic()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
- # if __name__ == "__main__":
- # pass
|