ica_response_time.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: yangzihao(yangzihao@china-icv.cn)
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. import math
  15. import pandas as pd
  16. import numpy as np
  17. from common import zip_time_pairs, continuous_group
  18. from log import logger
  19. """import functions"""
  20. # def zip_time_pairs(time_list, zip_list):
  21. # zip_time_pairs = zip(time_list, zip_list)
  22. # zip_vs_time = [[x, y] for x, y in zip_time_pairs if not math.isnan(y)]
  23. # return zip_vs_time
  24. # def continuous_group(df):
  25. # time_list = df['simTime'].values.tolist()
  26. # frame_list = df['simFrame'].values.tolist()
  27. #
  28. # group_time = []
  29. # group_frame = []
  30. # sub_group_time = []
  31. # sub_group_frame = []
  32. #
  33. # for i in range(len(frame_list)):
  34. # if not sub_group_time or frame_list[i] - frame_list[i - 1] <= 1:
  35. # sub_group_time.append(time_list[i])
  36. # sub_group_frame.append(frame_list[i])
  37. # else:
  38. # group_time.append(sub_group_time)
  39. # group_frame.append(sub_group_frame)
  40. # sub_group_time = [time_list[i]]
  41. # sub_group_frame = [frame_list[i]]
  42. #
  43. # group_time.append(sub_group_time)
  44. # group_frame.append(sub_group_frame)
  45. # group_time = [g for g in group_time if len(g) >= 2]
  46. # group_frame = [g for g in group_frame if len(g) >= 2]
  47. #
  48. # # 输出图表值
  49. # time = [[g[0], g[-1]] for g in group_time]
  50. # frame = [[g[0], g[-1]] for g in group_frame]
  51. #
  52. # time_df = pd.DataFrame(time, columns=['start_time', 'end_time'])
  53. # frame_df = pd.DataFrame(frame, columns=['start_frame', 'end_frame'])
  54. #
  55. # result_df = pd.concat([time_df, frame_df], axis=1)
  56. #
  57. # return result_df
  58. # def continous_judge(frame_list):
  59. # if not frame_list:
  60. # return 0
  61. #
  62. # cnt = 1
  63. # for i in range(1, len(frame_list)):
  64. # if frame_list[i] - frame_list[i - 1] <= 3:
  65. # continue
  66. # cnt += 1
  67. # return cnt
  68. # custom metric codes
  69. class CustomMetric(object):
  70. def __init__(self, all_data, case_name):
  71. self.data = all_data
  72. self.optimal_dict = self.data.config
  73. self.case_name = case_name
  74. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  75. self.df = pd.DataFrame()
  76. self.df_stop_and_go = pd.DataFrame()
  77. self.time_list_follow = list()
  78. self.frame_list_follow = list()
  79. self.follow_stop_time_start_list = list()
  80. self.result = {
  81. "name": "跟车启动响应时间",
  82. "value": [],
  83. # "weight": [],
  84. "tableData": {
  85. "avg": "", # 平均值,或指标值
  86. "max": "",
  87. "min": ""
  88. },
  89. "reportData": {
  90. "name": "跟车启动响应时间(s)",
  91. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  92. "data": [],
  93. "markLine": [],
  94. "range": [],
  95. },
  96. "statusFlag": {}
  97. }
  98. self.run()
  99. def data_extract(self):
  100. self.df = self.data.object_df
  101. self.df_stop_and_go = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  102. # self.df_stop_and_go = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  103. if self.df_stop_and_go.empty:
  104. self.result['statusFlag']['functionICA'] = False
  105. else:
  106. self.result['statusFlag']['functionICA'] = True
  107. def data_analyze(self):
  108. df = self.df_stop_and_go.copy()
  109. stop_v_threshold = 0.05
  110. df['v'] = df['v'].apply(lambda x: 0 if x <= stop_v_threshold else 1) # 区分速度为0或非0
  111. target_id = 2
  112. df_ego = df[df['playerId'] == 1].copy()
  113. df_obj = df[df['playerId'] == target_id].copy() # 目标车
  114. df_obj_time = df_obj['simTime'].values.tolist()
  115. df_ego = df_ego[df_ego['simTime'].isin(df_obj_time)].copy()
  116. df_ego = df_ego.drop_duplicates(["simTime", "simFrame"])
  117. df_obj = df_obj.drop_duplicates(["simTime", "simFrame"])
  118. df_ego['v_diff'] = df_ego['v'].diff()
  119. df_ego['v_start_flag'] = df_ego['v_diff'].apply(lambda x: 1 if x == 1 else 0) # 起步即为1
  120. df_ego['v_stop_flag'] = df_ego['v_diff'].apply(lambda x: 1 if x == -1 else 0) # 停车即为-1
  121. df_obj['v_diff'] = df_obj['v'].diff()
  122. obj_v_start_flag = df_obj['v_diff'].apply(lambda x: 1 if x == 1 else 0).values # 起步即为1
  123. obj_v_stop_flag = df_obj['v_diff'].apply(lambda x: 1 if x == -1 else 0).values # 停车即为1
  124. df_ego['obj_v_start_flag'] = obj_v_start_flag
  125. df_ego['obj_v_stop_flag'] = obj_v_stop_flag
  126. df_ego['flag_start'] = df_ego['obj_v_start_flag'] - df_ego['v_start_flag'] # 目标车起步即为1,自车起步即为-1
  127. df_ego['flag_stop'] = df_ego['obj_v_stop_flag'] - df_ego['v_stop_flag'] # 目标车停车即为1,自车停车即为-1
  128. flag_start_list = df_ego['flag_start'].values
  129. flag_stop_list = df_ego['flag_stop'].values
  130. time_list = df_ego['simTime'].values
  131. time_start_list = []
  132. time_stop_list = []
  133. for i, flag in enumerate(flag_start_list):
  134. if flag:
  135. t1 = time_list[i]
  136. if flag == -1:
  137. t2 = time_list[i]
  138. time_start_list.append(t2 - t1) # t2-t1即为自车起步响应时间
  139. for i, flag in enumerate(flag_stop_list):
  140. if flag:
  141. t1 = time_list[i]
  142. if flag == -1:
  143. t2 = time_list[i]
  144. time_stop_list.append(t2 - t1) # t2-t1即为自车停车响应时间
  145. time_start_list = [i for i in time_start_list if i != 0]
  146. followResponseTime = max(time_start_list) if time_start_list else 0
  147. self.follow_stop_time_start_list = time_start_list
  148. self.result['value'] = [round(followResponseTime, 2)] if not np.isnan(followResponseTime) else [0]
  149. def markline_statistic(self):
  150. pass
  151. def report_data_statistic(self):
  152. # time_list = self.df['simTime'].values.tolist()
  153. graph_list = [x for x in self.follow_stop_time_start_list if not np.isnan(x)]
  154. self.result['tableData']['avg'] = f'{np.mean(graph_list):.2f}' if graph_list else '-'
  155. self.result['tableData']['max'] = f'{max(graph_list):.2f}' if graph_list else '-'
  156. self.result['tableData']['min'] = f'{min(graph_list):.2f}' if graph_list else '-'
  157. self.result['reportData']['data'] = []
  158. self.markline_statistic()
  159. self.result['reportData']['markLine'] = []
  160. self.result['reportData']['range'] = []
  161. def run(self):
  162. # logger.info(f"Custom metric run:[{self.result['name']}].")
  163. logger.info(f"[case:{self.case_name}] Custom metric:[ica_distance_deviation:{self.result['name']}] evaluate.")
  164. try:
  165. self.data_extract()
  166. except Exception as e:
  167. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  168. try:
  169. self.data_analyze()
  170. except Exception as e:
  171. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  172. try:
  173. self.report_data_statistic()
  174. except Exception as e:
  175. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  176. # if __name__ == "__main__":
  177. # pass