ica_speed_deviation.py 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: yangzihao(yangzihao@china-icv.cn)
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. import pandas as pd
  15. import numpy as np
  16. from common import zip_time_pairs, continuous_group
  17. from log import logger
  18. """import functions"""
  19. # def zip_time_pairs(time_list, zip_list):
  20. # zip_time_pairs = zip(time_list, zip_list)
  21. # zip_vs_time = [[x, y] for x, y in zip_time_pairs if not math.isnan(y)]
  22. # return zip_vs_time
  23. # def continuous_group(df):
  24. # time_list = df['simTime'].values.tolist()
  25. # frame_list = df['simFrame'].values.tolist()
  26. #
  27. # group_time = []
  28. # group_frame = []
  29. # sub_group_time = []
  30. # sub_group_frame = []
  31. #
  32. # for i in range(len(frame_list)):
  33. # if not sub_group_time or frame_list[i] - frame_list[i - 1] <= 1:
  34. # sub_group_time.append(time_list[i])
  35. # sub_group_frame.append(frame_list[i])
  36. # else:
  37. # group_time.append(sub_group_time)
  38. # group_frame.append(sub_group_frame)
  39. # sub_group_time = [time_list[i]]
  40. # sub_group_frame = [frame_list[i]]
  41. #
  42. # group_time.append(sub_group_time)
  43. # group_frame.append(sub_group_frame)
  44. # group_time = [g for g in group_time if len(g) >= 2]
  45. # group_frame = [g for g in group_frame if len(g) >= 2]
  46. #
  47. # # 输出图表值
  48. # time = [[g[0], g[-1]] for g in group_time]
  49. # frame = [[g[0], g[-1]] for g in group_frame]
  50. #
  51. # time_df = pd.DataFrame(time, columns=['start_time', 'end_time'])
  52. # frame_df = pd.DataFrame(frame, columns=['start_frame', 'end_frame'])
  53. #
  54. # result_df = pd.concat([time_df, frame_df], axis=1)
  55. #
  56. # return result_df
  57. # def continous_judge(frame_list):
  58. # if not frame_list:
  59. # return 0
  60. #
  61. # cnt = 1
  62. # for i in range(1, len(frame_list)):
  63. # if frame_list[i] - frame_list[i - 1] <= 3:
  64. # continue
  65. # cnt += 1
  66. # return cnt
  67. # custom metric codes
  68. class CustomMetric(object):
  69. def __init__(self, all_data, case_name):
  70. self.data = all_data
  71. self.optimal_dict = self.data.config
  72. self.case_name = case_name
  73. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  74. self.df = pd.DataFrame()
  75. self.df_follow = pd.DataFrame()
  76. self.time_list_follow = list()
  77. self.frame_list_follow = list()
  78. self.v_relative_list = list()
  79. self.v_deviation_list = list()
  80. self.v_relative_list_full_time = list()
  81. self.result = {
  82. "name": "跟车速度偏差",
  83. "value": [],
  84. # "weight": [],
  85. "tableData": {
  86. "avg": "", # 平均值,或指标值
  87. "max": "",
  88. "min": ""
  89. },
  90. "reportData": {
  91. "name": "跟车速度偏差(km/h)",
  92. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  93. "data": [],
  94. "markLine": [],
  95. "range": [],
  96. },
  97. "statusFlag": {}
  98. }
  99. self.run()
  100. def data_extract(self):
  101. self.df = self.data.object_df
  102. self.df_follow = self.df[self.df['ACC_status'] == "Shut_off"].copy() # 数字3对应ICA的Active
  103. # self.df_follow = self.df[self.df['ACC_status'] == "Active"].copy() # 数字3对应ICA的Active
  104. if self.df_follow.empty:
  105. self.result['statusFlag']['functionICA'] = False
  106. else:
  107. self.result['statusFlag']['functionICA'] = True
  108. def data_analyze(self):
  109. df = self.df_follow.copy()
  110. col_list = ['simTime', 'simFrame', 'playerId', 'v', 'posX', 'posY'] # target_id
  111. df = df[col_list].copy()
  112. ego_df = df[df['playerId'] == 1][['simTime', 'simFrame', 'v', 'posX', 'posY']]
  113. # 筛选目标车(同一车道内,距离最近的前车)
  114. # obj_df = df[df['playerId'] == df['target_id']]
  115. target_id = 2
  116. obj_df = df[df['playerId'] == target_id][['simTime', 'simFrame', 'v', 'posX', 'posY']] # 目标车
  117. obj_df = obj_df.rename(columns={'v': 'v_obj', 'posX': 'posX_obj', 'posY': 'posY_obj'})
  118. df_merge = pd.merge(ego_df, obj_df, on=['simTime', 'simFrame'], how='left')
  119. df_merge['v_relative'] = df_merge['v'] - df_merge['v_obj']
  120. df_merge.replace([np.inf, -np.inf], np.nan, inplace=True) # 异常值处理
  121. self.time_list_follow = df_merge['simTime'].values.tolist()
  122. self.frame_list_follow = df_merge['simFrame'].values.tolist()
  123. self.v_relative_list = df_merge['v_relative'].values.tolist()
  124. self.v_deviation_list = abs(df_merge['v_relative']).values.tolist()
  125. tmp_df = ego_df[['simTime', 'simFrame']].copy()
  126. v_rel_df = df_merge[['simTime', 'v_relative']].copy()
  127. df_merged1 = pd.merge(tmp_df, v_rel_df, on='simTime', how='left')
  128. self.v_relative_list_full_time = df_merged1['v_relative'].values.tolist()
  129. max_velocity_deviation = abs(df_merge['v_relative']).max()
  130. self.result['value'] = [round(max_velocity_deviation, 2)] if not np.isnan(max_velocity_deviation) else [0]
  131. def markline_statistic(self):
  132. unfunc_df = pd.DataFrame({'simTime': self.time_list_follow, 'simFrame': self.frame_list_follow,
  133. 'v_deviation': self.v_deviation_list})
  134. unfunc_df = unfunc_df[unfunc_df['simFrame'] > 1]
  135. v_df = unfunc_df[unfunc_df['v_deviation'] > 5]
  136. v_df = v_df[['simTime', 'simFrame', 'v_deviation']]
  137. v_follow_df = continuous_group(v_df)
  138. v_follow_df['type'] = "ICA"
  139. self.markline_df = pd.concat([self.markline_df, v_follow_df], ignore_index=True)
  140. def report_data_statistic(self):
  141. time_list = self.df['simTime'].values.tolist()
  142. graph_list = [x for x in self.v_deviation_list if not np.isnan(x)]
  143. self.result['tableData']['avg'] = f'{np.mean(graph_list):.2f}' if graph_list else '-'
  144. self.result['tableData']['max'] = f'{max(graph_list):.2f}' if graph_list else '-'
  145. self.result['tableData']['min'] = f'{min(graph_list):.2f}' if graph_list else '-'
  146. zip_vs_time = zip_time_pairs(time_list, self.v_relative_list_full_time)
  147. self.result['reportData']['data'] = zip_vs_time
  148. self.markline_statistic()
  149. markline_slices = self.markline_df.to_dict('records')
  150. self.result['reportData']['markLine'] = markline_slices
  151. self.result['reportData']['range'] = f"[-5.0, 5.0]"
  152. def run(self):
  153. # logger.info(f"Custom metric run:[{self.result['name']}].")
  154. logger.info(f"[case:{self.case_name}] Custom metric:[ica_speed_deviation:{self.result['name']}] evaluate.")
  155. try:
  156. self.data_extract()
  157. except Exception as e:
  158. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  159. try:
  160. self.data_analyze()
  161. except Exception as e:
  162. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  163. try:
  164. self.report_data_statistic()
  165. except Exception as e:
  166. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  167. # if __name__ == "__main__":
  168. # pass