ldw_miss_warning_count1.py 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: yangzihao(yangzihao@china-icv.cn)
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. import pandas as pd
  15. import numpy as np
  16. from common import zip_time_pairs, continuous_group, continous_judge
  17. from log import logger
  18. """import functions"""
  19. # def zip_time_pairs(time_list, zip_list):
  20. # zip_time_pairs = zip(time_list, zip_list)
  21. # zip_vs_time = [[x, y] for x, y in zip_time_pairs if not math.isnan(y)]
  22. # return zip_vs_time
  23. # def continuous_group(df):
  24. # time_list = df['simTime'].values.tolist()
  25. # frame_list = df['simFrame'].values.tolist()
  26. #
  27. # group_time = []
  28. # group_frame = []
  29. # sub_group_time = []
  30. # sub_group_frame = []
  31. #
  32. # for i in range(len(frame_list)):
  33. # if not sub_group_time or frame_list[i] - frame_list[i - 1] <= 1:
  34. # sub_group_time.append(time_list[i])
  35. # sub_group_frame.append(frame_list[i])
  36. # else:
  37. # group_time.append(sub_group_time)
  38. # group_frame.append(sub_group_frame)
  39. # sub_group_time = [time_list[i]]
  40. # sub_group_frame = [frame_list[i]]
  41. #
  42. # group_time.append(sub_group_time)
  43. # group_frame.append(sub_group_frame)
  44. # group_time = [g for g in group_time if len(g) >= 2]
  45. # group_frame = [g for g in group_frame if len(g) >= 2]
  46. #
  47. # # 输出图表值
  48. # time = [[g[0], g[-1]] for g in group_time]
  49. # frame = [[g[0], g[-1]] for g in group_frame]
  50. #
  51. # time_df = pd.DataFrame(time, columns=['start_time', 'end_time'])
  52. # frame_df = pd.DataFrame(frame, columns=['start_frame', 'end_frame'])
  53. #
  54. # result_df = pd.concat([time_df, frame_df], axis=1)
  55. #
  56. # return result_df
  57. # def continous_judge(frame_list):
  58. # if not frame_list:
  59. # return 0
  60. #
  61. # cnt = 1
  62. # for i in range(1, len(frame_list)):
  63. # if frame_list[i] - frame_list[i - 1] <= 3:
  64. # continue
  65. # cnt += 1
  66. # return cnt
  67. # custom metric codes
  68. class CustomMetric(object):
  69. def __init__(self, all_data, case_name):
  70. self.data = all_data
  71. self.case_name = case_name
  72. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  73. self.result = {
  74. "name": "车道偏离漏预警次数(次)",
  75. "value": [],
  76. # "weight": [],
  77. "tableData": {
  78. "avg": "", # 平均值,或指标值
  79. "max": "",
  80. "min": ""
  81. },
  82. "reportData": {
  83. "name": "车道线距离(m)",
  84. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  85. "data": [],
  86. "markLine": [],
  87. "range": [],
  88. }
  89. }
  90. self.run()
  91. def data_extract(self):
  92. self.ego_df = self.data.ego_data
  93. self.df_roadmark = self.data.road_mark_df
  94. line_dist_df = self.df_roadmark[(self.df_roadmark['id'] == 0) | (self.df_roadmark['id'] == 2)].copy()
  95. df = line_dist_df.groupby('simFrame').apply(lambda t: abs(t['lateralDist']).min()).reset_index()
  96. df.columns = ["simFrame", "line_dist"]
  97. self.ego_df = pd.merge(self.ego_df, df, on='simFrame', how='left')
  98. self.df = self.ego_df[['simTime', 'simFrame', 'LKA_status', 'line_dist']].copy()
  99. def data_analyze(self):
  100. ldw_df = self.df
  101. # count miss warning
  102. miss_warning_df = ldw_df[(ldw_df['line_dist'] <= 0.4) & (ldw_df['LKA_status'] != "Active")]
  103. miss_warning_frame_list = miss_warning_df['simFrame'].values.tolist()
  104. miss_warning_count = continous_judge(miss_warning_frame_list)
  105. self.result['value'].append(miss_warning_count)
  106. def markline_statistic(self):
  107. metric_df = self.df[['simTime', 'simFrame', 'line_dist']].copy()
  108. m_df = metric_df[metric_df['line_dist'] < 0.4] # 与车道线距离过近
  109. m_df_continuous = continuous_group(m_df)
  110. m_df_continuous['type'] = 'LDW'
  111. self.markline_df = pd.concat([self.markline_df, m_df_continuous], ignore_index=True)
  112. def report_data_statistic(self):
  113. time_list = self.df['simTime'].values.tolist()
  114. line_dist_list = self.df['line_dist'].values.tolist()
  115. graph_list = [x for x in line_dist_list if not np.isnan(x)]
  116. self.result['tableData']['avg'] = f'{np.mean(graph_list):.2f}' if graph_list else 0
  117. self.result['tableData']['max'] = f'{max(graph_list):.2f}' if graph_list else 0
  118. self.result['tableData']['min'] = f'{min(graph_list):.2f}' if graph_list else 0
  119. zip_vs_time = zip_time_pairs(time_list, line_dist_list)
  120. self.result['reportData']['data'] = zip_vs_time
  121. self.markline_statistic()
  122. markline_slices = self.markline_df.to_dict('records')
  123. self.result['reportData']['markLine'] = markline_slices
  124. self.result['reportData']['range'] = f"[0, 0.4]"
  125. def run(self):
  126. # logger.info(f"Custom metric run:[{self.result['name']}].")
  127. logger.info(f"[case:{self.case_name}] Custom metric:[ldw_miss_warning_count:{self.result['name']}] evaluate.")
  128. try:
  129. self.data_extract()
  130. except Exception as e:
  131. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  132. try:
  133. self.data_analyze()
  134. except Exception as e:
  135. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  136. try:
  137. self.report_data_statistic()
  138. except Exception as e:
  139. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  140. # if __name__ == "__main__":
  141. # pass