123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: yangzihao(yangzihao@china-icv.cn)
- @Data: 2024/02/21
- @Last Modified: 2024/02/21
- @Summary: The template of custom indicator.
- """
- import pandas as pd
- import numpy as np
- from common import zip_time_pairs, continuous_group, continous_judge
- from log import logger
- """import functions"""
- # def zip_time_pairs(time_list, zip_list):
- # zip_time_pairs = zip(time_list, zip_list)
- # zip_vs_time = [[x, y] for x, y in zip_time_pairs if not math.isnan(y)]
- # return zip_vs_time
- # def continuous_group(df):
- # time_list = df['simTime'].values.tolist()
- # frame_list = df['simFrame'].values.tolist()
- #
- # group_time = []
- # group_frame = []
- # sub_group_time = []
- # sub_group_frame = []
- #
- # for i in range(len(frame_list)):
- # if not sub_group_time or frame_list[i] - frame_list[i - 1] <= 1:
- # sub_group_time.append(time_list[i])
- # sub_group_frame.append(frame_list[i])
- # else:
- # group_time.append(sub_group_time)
- # group_frame.append(sub_group_frame)
- # sub_group_time = [time_list[i]]
- # sub_group_frame = [frame_list[i]]
- #
- # group_time.append(sub_group_time)
- # group_frame.append(sub_group_frame)
- # group_time = [g for g in group_time if len(g) >= 2]
- # group_frame = [g for g in group_frame if len(g) >= 2]
- #
- # # 输出图表值
- # time = [[g[0], g[-1]] for g in group_time]
- # frame = [[g[0], g[-1]] for g in group_frame]
- #
- # time_df = pd.DataFrame(time, columns=['start_time', 'end_time'])
- # frame_df = pd.DataFrame(frame, columns=['start_frame', 'end_frame'])
- #
- # result_df = pd.concat([time_df, frame_df], axis=1)
- #
- # return result_df
- # def continous_judge(frame_list):
- # if not frame_list:
- # return 0
- #
- # cnt = 1
- # for i in range(1, len(frame_list)):
- # if frame_list[i] - frame_list[i - 1] <= 3:
- # continue
- # cnt += 1
- # return cnt
- # custom metric codes
- class CustomMetric(object):
- def __init__(self, all_data, case_name):
- self.data = all_data
- self.case_name = case_name
- self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
- self.result = {
- "name": "车道偏离漏预警次数(次)",
- "value": [],
- # "weight": [],
- "tableData": {
- "avg": "", # 平均值,或指标值
- "max": "",
- "min": ""
- },
- "reportData": {
- "name": "车道线距离(m)",
- # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
- "data": [],
- "markLine": [],
- "range": [],
- }
- }
- self.run()
- def data_extract(self):
- self.ego_df = self.data.ego_data
- self.df_roadmark = self.data.road_mark_df
- line_dist_df = self.df_roadmark[(self.df_roadmark['id'] == 0) | (self.df_roadmark['id'] == 2)].copy()
- df = line_dist_df.groupby('simFrame').apply(lambda t: abs(t['lateralDist']).min()).reset_index()
- df.columns = ["simFrame", "line_dist"]
- self.ego_df = pd.merge(self.ego_df, df, on='simFrame', how='left')
- self.df = self.ego_df[['simTime', 'simFrame', 'LKA_status', 'line_dist']].copy()
- def data_analyze(self):
- ldw_df = self.df
- # count miss warning
- miss_warning_df = ldw_df[(ldw_df['line_dist'] <= 0.4) & (ldw_df['LKA_status'] != "Active")]
- miss_warning_frame_list = miss_warning_df['simFrame'].values.tolist()
- miss_warning_count = continous_judge(miss_warning_frame_list)
- self.result['value'].append(miss_warning_count)
- def markline_statistic(self):
- metric_df = self.df[['simTime', 'simFrame', 'line_dist']].copy()
- m_df = metric_df[metric_df['line_dist'] < 0.4] # 与车道线距离过近
- m_df_continuous = continuous_group(m_df)
- m_df_continuous['type'] = 'LDW'
- self.markline_df = pd.concat([self.markline_df, m_df_continuous], ignore_index=True)
- def report_data_statistic(self):
- time_list = self.df['simTime'].values.tolist()
- line_dist_list = self.df['line_dist'].values.tolist()
- graph_list = [x for x in line_dist_list if not np.isnan(x)]
- self.result['tableData']['avg'] = f'{np.mean(graph_list):.2f}' if graph_list else 0
- self.result['tableData']['max'] = f'{max(graph_list):.2f}' if graph_list else 0
- self.result['tableData']['min'] = f'{min(graph_list):.2f}' if graph_list else 0
- zip_vs_time = zip_time_pairs(time_list, line_dist_list)
- self.result['reportData']['data'] = zip_vs_time
- self.markline_statistic()
- markline_slices = self.markline_df.to_dict('records')
- self.result['reportData']['markLine'] = markline_slices
- self.result['reportData']['range'] = f"[0, 0.4]"
- def run(self):
- # logger.info(f"Custom metric run:[{self.result['name']}].")
- logger.info(f"[case:{self.case_name}] Custom metric:[ldw_miss_warning_count:{self.result['name']}] evaluate.")
- try:
- self.data_extract()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
- try:
- self.data_analyze()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
- try:
- self.report_data_statistic()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
- # if __name__ == "__main__":
- # pass
|