cicv_LKA_02_lateral_offset.py 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhangyu
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. 最大横向偏移量
  17. zy_center_distance_expectation
  18. """
  19. import math
  20. import pandas as pd
  21. import numpy as np
  22. from common import zip_time_pairs, continuous_group, get_status_active_data
  23. from log import logger
  24. """import functions"""
  25. # custom metric codes
  26. class CustomMetric(object):
  27. def __init__(self, all_data, case_name):
  28. self.data = all_data
  29. self.optimal_dict = self.data.config
  30. self.status_trigger_dict = self.data.status_trigger_dict
  31. self.case_name = case_name
  32. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  33. self.df = pd.DataFrame()
  34. self.ego_df = pd.DataFrame()
  35. self.roadPos_df = pd.DataFrame()
  36. self.time_list_follow = list()
  37. self.frame_list_follow = list()
  38. self.dist_list = list()
  39. self.dist_deviation_list = list()
  40. self.dist_deviation_list_full_time = list()
  41. self.result = {
  42. "name": "最大横向偏移量",
  43. "value": [],
  44. # "weight": [],
  45. "tableData": {
  46. "avg": "", # 平均值,或指标值
  47. "max": "",
  48. "min": ""
  49. },
  50. "reportData": {
  51. "name": "最大横向偏移量(m)",
  52. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  53. "data": [],
  54. "markLine": [],
  55. "range": [],
  56. },
  57. "statusFlag": {}
  58. }
  59. self.run()
  60. print(f"指标02: 最大横向偏移量: {self.result['value']}")
  61. def data_extract(self):
  62. self.df = self.data.object_df
  63. self.ego_df = self.data.object_df[self.data.object_df.playerId == 1]
  64. # new active get code
  65. active_time_ranges = self.status_trigger_dict['LKA']['LKA_active_time']
  66. self.roadPos_df = get_status_active_data(active_time_ranges, self.data.road_pos_df)
  67. if self.roadPos_df.empty:
  68. self.result['statusFlag']['function_LKA'] = False
  69. else:
  70. self.result['statusFlag']['function_LKA'] = True
  71. def dist(self, x1, y1, x2, y2):
  72. dis = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
  73. return dis
  74. def Compute_nearby_distance_to_lane_boundary(self, x, width_ego):
  75. if x.lateralDist < abs(x.right_lateral_distance):
  76. return x.lateralDist - width_ego/2
  77. else:
  78. return abs(x.right_lateral_distance) - width_ego/2
  79. def func_laneOffset_abs(self, x):
  80. return abs(x.laneOffset)
  81. def data_analyze(self):
  82. # 提取自车宽度
  83. roadPos_df = self.roadPos_df
  84. # 提取距离左车道线和右车道线距离
  85. roadPos_ego_df = roadPos_df[roadPos_df.playerId == 1].reset_index(drop=True)
  86. # # 计算到车道边界线距离
  87. roadPos_ego_df['laneOffset_abs'] = roadPos_ego_df.apply(lambda x: self.func_laneOffset_abs(x), axis=1)
  88. max_laneOffset_abs_index = roadPos_ego_df['laneOffset_abs'].idxmax()
  89. row_with_max_value = roadPos_ego_df.iloc[max_laneOffset_abs_index].laneOffset
  90. self.result['value'] = [row_with_max_value]
  91. self.time_list_follow = roadPos_ego_df['simTime'].values.tolist()
  92. self.frame_list_follow = roadPos_ego_df['simFrame'].values.tolist()
  93. self.dist_deviation_list = roadPos_ego_df['laneOffset'].values.tolist()
  94. def markline_statistic(self):
  95. unfunc_df = pd.DataFrame({'simTime': self.time_list_follow, 'simFrame': self.frame_list_follow,
  96. 'dist_deviation': self.dist_deviation_list})
  97. unfunc_df = unfunc_df[unfunc_df['simFrame'] > 1]
  98. # v_df = unfunc_df[unfunc_df['dist_deviation'] > 0]
  99. v_df = unfunc_df
  100. v_df = v_df[['simTime', 'simFrame', 'dist_deviation']]
  101. v_follow_df = continuous_group(v_df)
  102. v_follow_df['type'] = "ICA"
  103. self.markline_df = pd.concat([self.markline_df, v_follow_df], ignore_index=True)
  104. def report_data_statistic(self):
  105. time_list = self.ego_df['simTime'].values.tolist()
  106. graph_list = [x for x in self.dist_deviation_list if not np.isnan(x)]
  107. self.result['tableData']['avg'] = f'{np.mean(graph_list):.3f}' if graph_list else 0
  108. self.result['tableData']['max'] = f'{max(graph_list):.3f}' if graph_list else 0
  109. self.result['tableData']['min'] = f'{min(graph_list):.3f}' if graph_list else 0
  110. zip_vs_time = zip_time_pairs(time_list, self.dist_deviation_list)
  111. self.result['reportData']['data'] = zip_vs_time
  112. self.markline_statistic()
  113. markline_slices = self.markline_df.to_dict('records')
  114. # self.result['reportData']['markLine'] = markline_slices
  115. self.result['reportData']['range'] = f"[-1.875, 1.875]"
  116. def run(self):
  117. # logger.info(f"Custom metric run:[{self.result['name']}].")
  118. logger.info(f"[case:{self.case_name}] Custom metric:[ica_distance_deviation:{self.result['name']}] evaluate.")
  119. try:
  120. self.data_extract()
  121. except Exception as e:
  122. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  123. try:
  124. self.data_analyze()
  125. except Exception as e:
  126. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  127. try:
  128. self.report_data_statistic()
  129. except Exception as e:
  130. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  131. # if __name__ == "__main__":
  132. # pass