1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: zhanghaiwen(zhanghaiwen@china-icv.cn), yangzihao(yangzihao@china-icv.cn)
- @Data: 2023/06/25
- @Last Modified: 2023/06/25
- @Summary: Comfort metrics
- """
- import os
- import sys
- import math
- import pandas as pd
- import numpy as np
- import scipy.signal
- sys.path.append('../common')
- sys.path.append('../modules')
- sys.path.append('../results')
- from data_info import DataInfoList
- from score_weight import cal_score_with_priority, cal_weight_from_80
- from common import get_interpolation, score_grade, string_concatenate, replace_key_with_value, get_frame_with_time
- import matplotlib.pyplot as plt
- def peak_valley_decorator(method):
- def wrapper(self, *args, **kwargs):
- peak_valley = self._peak_valley_determination(self.df)
- pv_list = self.df.loc[peak_valley, ['simTime', 'speedH']].values.tolist()
- if len(pv_list) != 0:
- flag = True
- p_last = pv_list[0]
- for i in range(1, len(pv_list)):
- p_curr = pv_list[i]
- if self._peak_valley_judgment(p_last, p_curr):
- # method(self, p_curr, p_last)
- method(self, p_curr, p_last, flag, *args, **kwargs)
- else:
- p_last = p_curr
- return method
- else:
- flag = False
- p_curr = [0, 0]
- p_last = [0, 0]
- method(self, p_curr, p_last, flag, *args, **kwargs)
- return method
- return wrapper
- class Comfort(object):
- """
- Class for achieving comfort metrics for autonomous driving.
- Attributes:
- dataframe: Vehicle driving data, stored in dataframe format.
- """
- def __init__(self, data_processed, custom_data, scoreModel, resultPath):
- self.eval_data = pd.DataFrame()
- self.data_processed = data_processed
- self.scoreModel = scoreModel
- self.resultPath = resultPath
- self.data = data_processed.obj_data[1]
- self.mileage = data_processed.report_info['mileage']
- self.ego_df = pd.DataFrame()
- self.discomfort_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
- # self.df_drivectrl = data_processed.driver_ctrl_df
- self.config = data_processed.config
- comfort_config = data_processed.comfort_config
- self.comfort_config = comfort_config
- # common data
- self.bulitin_metric_list = self.config.builtinMetricList
- # dimension data
- self.weight_custom = comfort_config['weightCustom']
- self.metric_list = comfort_config['metric']
- self.type_list = comfort_config['type']
- self.type_name_dict = comfort_config['typeName']
- self.name_dict = comfort_config['name']
- self.unit_dict = comfort_config['unit']
- # custom metric data
- self.customMetricParam = comfort_config['customMetricParam']
- self.custom_metric_list = list(self.customMetricParam.keys())
- self.custom_data = custom_data
- self.custom_param_dict = {}
- # score data
- self.weight = comfort_config['weightDimension']
- self.weight_type_dict = comfort_config['typeWeight']
- self.weight_type_list = comfort_config['typeWeightList']
- self.weight_dict = comfort_config['weight']
- self.weight_list = comfort_config['weightList']
- self.priority_dict = comfort_config['priority']
- self.priority_list = comfort_config['priorityList']
- self.kind_dict = comfort_config['kind']
- self.optimal_dict = comfort_config['optimal']
- self.optimal1_dict = self.optimal_dict[0]
- self.optimal2_dict = self.optimal_dict[1]
- self.optimal3_dict = self.optimal_dict[2]
- self.multiple_dict = comfort_config['multiple']
- self.kind_list = comfort_config['kindList']
- self.optimal_list = comfort_config['optimalList']
- self.multiple_list = comfort_config['multipleList']
- # metric data
- self.metric_dict = comfort_config['typeMetricDict']
- self.lat_metric_list = self.metric_dict['comfortLat']
- self.lon_metric_list = self.metric_dict['comfortLon']
- # self.lat_metric_list = ["zigzag", "shake"]
- # self.lon_metric_list = ["cadence", "slamBrake", "slamAccelerate"]
- self.time_list = data_processed.driver_ctrl_data['time_list']
- self.frame_list = data_processed.driver_ctrl_data['frame_list']
- self.linear_accel_dict = dict()
- self.angular_accel_dict = dict()
- self.count_dict = {}
- self.duration_dict = {}
- self.strength_dict = {}
- self.discomfort_count = 0
- self.zigzag_count = 0
- self.shake_count = 0
- self.cadence_count = 0
- self.slam_brake_count = 0
- self.slam_accel_count = 0
- self.zigzag_strength = 0
- self.shake_strength = 0
- self.cadence_strength = 0
- self.slam_brake_strength = 0
- self.slam_accel_strength = 0
- self.discomfort_duration = 0
- self.zigzag_duration = 0
- self.shake_duration = 0
- self.cadence_duration = 0
- self.slam_brake_duration = 0
- self.slam_accel_duration = 0
- self.zigzag_time_list = []
- self.zigzag_frame_list = []
- self.zigzag_stre_list = []
- self.cur_ego_path_list = []
- self.curvature_list = []
- self._get_data()
- self._comf_param_cal()
- def _get_data(self):
- """
- """
- comfort_info_list = DataInfoList.COMFORT_INFO
- self.ego_df = self.data[comfort_info_list].copy()
- # self.df = self.ego_df.set_index('simFrame') # 索引是csv原索引
- self.df = self.ego_df.reset_index(drop=True) # 索引是csv原索引
- def _cal_cur_ego_path(self, row):
- try:
- divide = (row['speedX'] ** 2 + row['speedY'] ** 2) ** (3 / 2)
- if not divide:
- res = None
- else:
- res = (row['speedX'] * row['accelY'] - row['speedY'] * row['accelX']) / divide
- except:
- res = None
- return res
- def _cal_max_min_avg(self, num_list):
- maxx = max(num_list) if num_list else "-"
- minn = min(num_list) if num_list else "-"
- avg = sum(num_list) / len(num_list) if num_list else "-"
- result = {
- "max": maxx,
- "min": minn,
- "avg": avg
- }
- return result
- def _comf_param_cal(self):
- """
- """
- for i in range(len(self.optimal_list)):
- if i % 3 == 2:
- continue
- else:
- self.optimal_list[i] = round(self.optimal_list[i] * self.mileage / 100000, 8)
- self.optimal1_dict = {key: value * self.mileage / 100000 for key, value in self.optimal1_dict.copy().items()}
- self.optimal2_dict = {key: value * self.mileage / 100000 for key, value in self.optimal2_dict.copy().items()}
- # [log]
- self.ego_df['ip_acc'] = self.ego_df['v'].apply(get_interpolation, point1=[18, 4], point2=[72, 2])
- self.ego_df['ip_dec'] = self.ego_df['v'].apply(get_interpolation, point1=[18, -5], point2=[72, -3.5])
- self.ego_df['slam_brake'] = self.ego_df.apply(
- lambda row: self._slam_brake_process(row['lon_acc'], row['ip_dec']), axis=1)
- self.ego_df['slam_accel'] = self.ego_df.apply(
- lambda row: self._slam_accelerate_process(row['lon_acc'], row['ip_acc']), axis=1)
- self.ego_df['cadence'] = self.ego_df.apply(
- lambda row: self._cadence_process_new(row['lon_acc'], row['ip_acc'], row['ip_dec']), axis=1)
- self.accel_list = self.ego_df['accel'].values.tolist()
- self.accelH_list = self.ego_df['accelH'].values.tolist()
- self.linear_accel_dict = self._cal_max_min_avg(self.ego_df['accel'].dropna().values.tolist())
- self.angular_accel_dict = self._cal_max_min_avg(self.ego_df['accelH'].dropna().values.tolist())
- # for shake detector
- # self.ego_df['cur_ego_path'] = self.ego_df.apply(self._cal_cur_ego_path, axis=1)
- # self.ego_df['curvHor'] = self.ego_df['curvHor'].astype('float')
- # self.ego_df['cur_diff'] = (self.ego_df['cur_ego_path'] - self.ego_df['curvHor']).abs()
- # self.ego_df['R'] = self.ego_df['curvHor'].apply(lambda x: 10000 if x == 0 else 1 / x)
- # self.ego_df['R_ego'] = self.ego_df['cur_ego_path'].apply(lambda x: 10000 if x == 0 else 1 / x)
- # self.ego_df['R_diff'] = (self.ego_df['R_ego'] - self.ego_df['R']).abs()
- #
- # self.cur_ego_path_list = self.ego_df['cur_ego_path'].values.tolist()
- # self.curvature_list = self.ego_df['curvHor'].values.tolist()
- def _peak_valley_determination(self, df):
- """
- Determine the peak and valley of the vehicle based on its current angular velocity.
- Parameters:
- df: Dataframe containing the vehicle angular velocity.
- Returns:
- peak_valley: List of indices representing peaks and valleys.
- """
- peaks, _ = scipy.signal.find_peaks(df['speedH'], height=0.01, distance=1, prominence=0.01)
- valleys, _ = scipy.signal.find_peaks(-df['speedH'], height=0.01, distance=1, prominence=0.01)
- peak_valley = sorted(list(peaks) + list(valleys))
- return peak_valley
- def _peak_valley_judgment(self, p_last, p_curr, tw=6000, avg=0.4):
- """
- Determine if the given peaks and valleys satisfy certain conditions.
- Parameters:
- p_last: Previous peak or valley data point.
- p_curr: Current peak or valley data point.
- tw: Threshold time difference between peaks and valleys.
- avg: Angular velocity gap threshold.
- Returns:
- Boolean indicating whether the conditions are satisfied.
- """
- t_diff = p_curr[0] - p_last[0]
- v_diff = abs(p_curr[1] - p_last[1])
- s = p_curr[1] * p_last[1]
- zigzag_flag = t_diff < tw and v_diff > avg and s < 0
- if zigzag_flag and ([p_last[0], p_curr[0]] not in self.zigzag_time_list):
- self.zigzag_time_list.append([p_last[0], p_curr[0]])
- return zigzag_flag
- @peak_valley_decorator
- def zigzag_count_func(self, p_curr, p_last, flag=True):
- """
- Count the number of zigzag movements.
- Parameters:
- df: Input dataframe data.
- Returns:
- zigzag_count: Number of zigzag movements.
- """
- if flag:
- self.zigzag_count += 1
- else:
- self.zigzag_count += 0
- @peak_valley_decorator
- def cal_zigzag_strength_strength(self, p_curr, p_last, flag=True):
- """
- Calculate various strength statistics.
- Returns:
- Tuple containing maximum strength, minimum strength,
- average strength, and 99th percentile strength.
- """
- if flag:
- v_diff = abs(p_curr[1] - p_last[1])
- t_diff = p_curr[0] - p_last[0]
- self.zigzag_stre_list.append(v_diff / t_diff) # 平均角加速度
- else:
- self.zigzag_stre_list = []
- def _shake_detector(self, Cr_diff=0.05, T_diff=0.39):
- """
- ego车横向加速度ax;
- ego车轨迹横向曲率;
- ego车轨迹曲率变化率;
- ego车所在车lane曲率;
- ego车所在车lane曲率变化率;
- 转向灯(暂时存疑,可不用)Cr_diff = 0.1, T_diff = 0.04
- 求解曲率公式k(t) = (x'(t) * y''(t) - y'(t) * x''(t)) / ((x'(t))^2 + (y'(t))^2)^(3/2)
- """
- time_list = []
- frame_list = []
- shake_time_list = []
- df = self.ego_df.copy()
- df = df[df['cur_diff'] > Cr_diff]
- df['frame_ID_diff'] = df['simFrame'].diff() # 找出行车轨迹曲率与道路曲率之差大于阈值的数据段
- filtered_df = df[df.frame_ID_diff > T_diff] # 此处是用大间隔区分多次晃动情景 。
- row_numbers = filtered_df.index.tolist()
- cut_column = pd.cut(df.index, bins=row_numbers)
- grouped = df.groupby(cut_column)
- dfs = {}
- for name, group in grouped:
- dfs[name] = group.reset_index(drop=True)
- for name, df_group in dfs.items():
- # 直道,未主动换道
- df_group['curvHor'] = df_group['curvHor'].abs()
- df_group_straight = df_group[(df_group.lightMask == 0) & (df_group.curvHor < 0.001)]
- if not df_group_straight.empty:
- tmp_list = df_group_straight['simTime'].values
- # shake_time_list.append([tmp_list[0], tmp_list[-1]])
- time_list.extend(df_group_straight['simTime'].values)
- frame_list.extend(df_group_straight['simFrame'].values)
- self.shake_count = self.shake_count + 1
- # 打转向灯,道路为直道,此时晃动判断标准车辆曲率变化率为一个更大的阈值
- df_group_change_lane = df_group[(df_group['lightMask'] != 0) & (df_group['curvHor'] < 0.001)]
- df_group_change_lane_data = df_group_change_lane[df_group_change_lane.cur_diff > Cr_diff + 0.2]
- if not df_group_change_lane_data.empty:
- tmp_list = df_group_change_lane_data['simTime'].values
- # shake_time_list.append([tmp_list[0], tmp_list[-1]])
- time_list.extend(df_group_change_lane_data['simTime'].values)
- frame_list.extend(df_group_change_lane_data['simFrame'].values)
- self.shake_count = self.shake_count + 1
- # 转弯,打转向灯
- df_group_turn = df_group[(df_group['lightMask'] != 0) & (df_group['curvHor'].abs() > 0.001)]
- df_group_turn_data = df_group_turn[df_group_turn.cur_diff.abs() > Cr_diff + 0.1]
- if not df_group_turn_data.empty:
- tmp_list = df_group_turn_data['simTime'].values
- # shake_time_list.append([tmp_list[0], tmp_list[-1]])
- time_list.extend(df_group_turn_data['simTime'].values)
- frame_list.extend(df_group_turn_data['simFrame'].values)
- self.shake_count = self.shake_count + 1
- t_list = time_list
- f_list = frame_list
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not sub_group_time or t_list[i] - t_list[i - 1] <= 0.2:
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- # group_time.append(sub_group_time)
- # group_frame.append(sub_group_frame)
- # group_time = [g for g in group_time if len(g) >= 3]
- # group_frame = [g for g in group_frame if len(g) >= 3]
- #
- # group_time = []
- # sub_group = []
- # for i in range(len(t_list)):
- # if not sub_group or t_list[i] - t_list[i - 1] <= 0.2:
- # sub_group.append(t_list[i])
- # else:
- # group_time.append(sub_group)
- # sub_group = [t_list[i]]
- #
- # group_time.append(sub_group)
- # group_time = [g for g in group_time if len(g) >= 3]
- # 输出图表值
- shake_time = [[g[0], g[-1]] for g in group_time]
- shake_frame = [[g[0], g[-1]] for g in group_frame]
- self.shake_count = len(shake_time)
- if shake_time:
- time_df = pd.DataFrame(shake_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(shake_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'shake'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- return time_list
- def _cadence_process(self, lon_acc_roc, ip_dec_roc):
- if abs(lon_acc_roc) >= abs(ip_dec_roc) or abs(lon_acc_roc) < 1:
- return np.nan
- # elif abs(lon_acc_roc) == 0:
- elif abs(lon_acc_roc) == 0:
- return 0
- elif lon_acc_roc > 0 and lon_acc_roc < -ip_dec_roc:
- return 1
- elif lon_acc_roc < 0 and lon_acc_roc > ip_dec_roc:
- return -1
- def _slam_brake_process(self, lon_acc, ip_dec):
- if lon_acc - ip_dec < 0:
- return 1
- else:
- return 0
- def _slam_accelerate_process(self, lon_acc, ip_acc):
- if lon_acc - ip_acc > 0:
- return 1
- else:
- return 0
- def _cadence_process_new(self, lon_acc, ip_acc, ip_dec):
- if abs(lon_acc) < 1 or lon_acc > ip_acc or lon_acc < ip_dec:
- return np.nan
- # elif abs(lon_acc_roc) == 0:
- elif abs(lon_acc) == 0:
- return 0
- elif lon_acc > 0 and lon_acc < ip_acc:
- return 1
- elif lon_acc < 0 and lon_acc > ip_dec:
- return -1
- def _cadence_detector(self):
- """
- # 加速度突变:先加后减,先减后加,先加然后停,先减然后停
- # 顿挫:2s内多次加速度变化率突变
- # 求出每一个特征点,然后提取,然后将每一个特征点后面的2s做一个窗口,统计频率,避免无效运算
- # 将特征点筛选出来
- # 将特征点时间作为聚类标准,大于1s的pass,小于等于1s的聚类到一个分组
- # 去掉小于3个特征点的分组
- """
- # data = self.ego_df[['simTime', 'simFrame', 'lon_acc_roc', 'cadence']].copy()
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'lon_acc_roc', 'cadence']].copy()
- time_list = data['simTime'].values.tolist()
- data = data[data['cadence'] != np.nan]
- data['cadence_diff'] = data['cadence'].diff()
- data.dropna(subset='cadence_diff', inplace=True)
- data = data[data['cadence_diff'] != 0]
- t_list = data['simTime'].values.tolist()
- f_list = data['simFrame'].values.tolist()
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not sub_group_time or t_list[i] - t_list[i - 1] <= 1: # 特征点相邻一秒内的,算作同一组顿挫
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 1] # 有一次特征点则算作一次顿挫
- group_frame = [g for g in group_frame if len(g) >= 1]
- # group_time = []
- # sub_group = []
- #
- # for i in range(len(f_list)):
- # if not sub_group or t_list[i] - t_list[i - 1] <= 1: # 特征点相邻一秒内的,算作同一组顿挫
- # sub_group.append(t_list[i])
- # else:
- # group_time.append(sub_group)
- # sub_group = [t_list[i]]
- #
- # group_time.append(sub_group)
- # group_time = [g for g in group_time if len(g) >= 1] # 有一次特征点则算作一次顿挫
- # 输出图表值
- cadence_time = [[g[0], g[-1]] for g in group_time]
- cadence_frame = [[g[0], g[-1]] for g in group_frame]
- if cadence_time:
- time_df = pd.DataFrame(cadence_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(cadence_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'cadence'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- # 将顿挫组的起始时间为组重新统计时间
- cadence_time_list = [time for pair in cadence_time for time in time_list if pair[0] <= time <= pair[1]]
- # time_list = [element for sublist in group_time for element in sublist]
- # merged_list = [element for sublist in res_group for element in sublist]
- # res_df = data[data['simTime'].isin(merged_list)]
- stre_list = []
- freq_list = []
- for g in group_time:
- # calculate strength
- g_df = data[data['simTime'].isin(g)]
- strength = g_df['lon_acc'].abs().mean()
- stre_list.append(strength)
- # calculate frequency
- cnt = len(g)
- t_start = g_df['simTime'].iloc[0]
- t_end = g_df['simTime'].iloc[-1]
- t_delta = t_end - t_start
- frequency = cnt / t_delta
- freq_list.append(frequency)
- self.cadence_count = len(freq_list)
- cadence_stre = sum(stre_list) / len(stre_list) if stre_list else 0
- return cadence_time_list
- def _slam_brake_detector(self):
- # 统计急刹全为1的分段的个数,记录分段开头的frame_ID
- # data = self.ego_df[['simTime', 'simFrame', 'lon_acc_roc', 'ip_dec_roc', 'slam_brake']].copy()
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'lon_acc_roc', 'ip_dec', 'slam_brake']].copy()
- # data['slam_diff'] = data['slam_brake'].diff()
- # res_df = data[data['slam_diff'] == 1]
- res_df = data[data['slam_brake'] == 1]
- t_list = res_df['simTime'].values
- f_list = res_df['simFrame'].values.tolist()
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not sub_group_time or f_list[i] - f_list[i - 1] <= 1: # 连续帧的算作同一组急刹
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 2] # 达到两帧算作一次急刹
- group_frame = [g for g in group_frame if len(g) >= 2]
- # group_time = []
- # sub_group = []
- #
- # for i in range(len(f_list)):
- # if not sub_group or f_list[i] - f_list[i - 1] <= 1: # 连续帧的算作同一组急刹
- # sub_group.append(t_list[i])
- # else:
- # group_time.append(sub_group)
- # sub_group = [t_list[i]]
- #
- # group_time.append(sub_group)
- # group_time = [g for g in group_time if len(g) >= 2] # 达到两帧算作一次急刹
- # 输出图表值
- slam_brake_time = [[g[0], g[-1]] for g in group_time]
- slam_brake_frame = [[g[0], g[-1]] for g in group_frame]
- if slam_brake_time:
- time_df = pd.DataFrame(slam_brake_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(slam_brake_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'slam_brake'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- time_list = [element for sublist in group_time for element in sublist]
- self.slam_brake_count = len(group_time) # / self.mileage # * 1000000
- return time_list
- def _slam_accel_detector(self):
- # 统计急刹全为1的分段的个数,记录分段开头的frame_ID
- # data = self.ego_df[['simTime', 'simFrame', 'lon_acc_roc', 'ip_acc_roc', 'slam_accel']].copy()
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'ip_acc', 'slam_accel']].copy()
- # data['slam_diff'] = data['slam_accel'].diff()
- # res_df = data.loc[data['slam_diff'] == 1]
- res_df = data.loc[data['slam_accel'] == 1]
- t_list = res_df['simTime'].values
- f_list = res_df['simFrame'].values.tolist()
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not group_time or f_list[i] - f_list[i - 1] <= 1: # 连续帧的算作同一组急加速
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 2]
- group_frame = [g for g in group_frame if len(g) >= 2]
- # group_time = []
- # sub_group = []
- #
- # for i in range(len(f_list)):
- # if not sub_group or f_list[i] - f_list[i - 1] <= 1: # 连续帧的算作同一组急加速
- # sub_group.append(t_list[i])
- # else:
- # group_time.append(sub_group)
- # sub_group = [t_list[i]]
- #
- # group_time.append(sub_group)
- # group_time = [g for g in group_time if len(g) >= 2] # 达到两帧算作一次急加速
- # 输出图表值
- slam_accel_time = [[g[0], g[-1]] for g in group_time]
- slam_accel_frame = [[g[0], g[-1]] for g in group_frame]
- if slam_accel_time:
- time_df = pd.DataFrame(slam_accel_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(slam_accel_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'slam_accel'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- time_list = [element for sublist in group_time for element in sublist]
- self.slam_accel_count = len(group_time) # / self.mileage # * 1000000
- return time_list
- def comf_statistic(self):
- """
- """
- # df = self.ego_df[['simTime', 'cur_diff', 'lon_acc', 'lon_acc_roc', 'accelH']].copy()
- df = self.ego_df[['simTime', 'lon_acc', 'lon_acc_roc', 'accelH']].copy()
- self.zigzag_count_func()
- self.cal_zigzag_strength_strength()
- if self.zigzag_time_list:
- zigzag_df = pd.DataFrame(self.zigzag_time_list, columns=['start_time', 'end_time'])
- zigzag_df = get_frame_with_time(zigzag_df, self.ego_df)
- zigzag_df['type'] = 'zigzag'
- self.discomfort_df = pd.concat([self.discomfort_df, zigzag_df], ignore_index=True)
- # discomfort_df = pd.concat([time_df, frame_df], axis=1)
- # self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- zigzag_t_list = []
- # 只有[t_start, t_end]数对,要提取为完整time list
- t_list = df['simTime'].values.tolist()
- for t_start, t_end in self.zigzag_time_list:
- index_1 = t_list.index(t_start)
- index_2 = t_list.index(t_end)
- zigzag_t_list.extend(t_list[index_1:index_2 + 1])
- zigzag_t_list = list(set(zigzag_t_list))
- # shake_t_list = self._shake_detector()
- cadence_t_list = self._cadence_detector()
- slam_brake_t_list = self._slam_brake_detector()
- slam_accel_t_list = self._slam_accel_detector()
- # comfort_time_dict = {
- # 'zigzag_time_list': zigzag_t_list,
- # 'shake_time_list': shake_t_list,
- # 'cadence_time_list': cadence_t_list,
- # 'slam_brake_time_list': slam_brake_t_list,
- # 'slam_accelerate_time_list': slam_accel_t_list
- # }
- discomfort_time_list = zigzag_t_list + cadence_t_list + slam_brake_t_list + slam_accel_t_list
- discomfort_time_list = sorted(discomfort_time_list) # 排序
- discomfort_time_list = list(set(discomfort_time_list)) # 去重
- time_diff = self.time_list[3] - self.time_list[2]
- # time_diff = 0.4
- self.discomfort_duration = len(discomfort_time_list) * time_diff
- df['flag_zigzag'] = df['simTime'].apply(lambda x: 1 if x in zigzag_t_list else 0)
- # df['flag_shake'] = df['simTime'].apply(lambda x: 1 if x in shake_t_list else 0)
- df['flag_cadence'] = df['simTime'].apply(lambda x: 1 if x in cadence_t_list else 0)
- df['flag_slam_brake'] = df['simTime'].apply(lambda x: 1 if x in slam_brake_t_list else 0)
- df['flag_slam_accel'] = df['simTime'].apply(lambda x: 1 if x in slam_accel_t_list else 0)
- # hectokilometer = 100000 # 百公里
- self.zigzag_duration = df['flag_zigzag'].sum() * time_diff # / self.mileage * hectokilometer
- # self.shake_duration = df['flag_shake'].sum() * time_diff # / self.mileage * hectokilometer
- self.cadence_duration = df['flag_cadence'].sum() * time_diff # / self.mileage * hectokilometer
- self.slam_brake_duration = df['flag_slam_brake'].sum() * time_diff # / self.mileage * hectokilometer
- self.slam_accel_duration = df['flag_slam_accel'].sum() * time_diff # / self.mileage * hectokilometer
- # 强度取值可考虑最大值,暂定平均值,具体视数据情况而定
- # self.zigzag_strength = np.mean(self.zigzag_stre_list) if self.zigzag_stre_list else 0
- self.zigzag_strength = (df['flag_zigzag'] * abs(df['accelH'])).mean()
- # self.shake_strength = (df['flag_shake'] * abs(df['cur_diff'])).mean()
- self.cadence_strength = (df['flag_cadence'] * abs(df['lon_acc'])).mean()
- self.slam_brake_strength = (df['flag_slam_brake'] * abs(df['lon_acc'])).mean()
- self.slam_accel_strength = (df['flag_slam_accel'] * abs(df['lon_acc'])).mean()
- self.zigzag_strength = self._nan_detect(self.zigzag_strength)
- # self.shake_strength = self._nan_detect(self.shake_strength)
- self.cadence_strength = self._nan_detect(self.cadence_strength)
- self.slam_brake_strength = self._nan_detect(self.slam_brake_strength)
- self.slam_accel_strength = self._nan_detect(self.slam_accel_strength)
- self.count_dict = {
- "zigzag": self.zigzag_count,
- # "shake": self.shake_count,
- "cadence": self.cadence_count,
- "slamBrake": self.slam_brake_count,
- "slamAccelerate": self.slam_accel_count
- }
- self.duration_dict = {
- "zigzag": self.zigzag_duration,
- # "shake": self.shake_duration,
- "cadence": self.cadence_duration,
- "slamBrake": self.slam_brake_duration,
- "slamAccelerate": self.slam_accel_duration
- }
- self.strength_dict = {
- "zigzag": self.zigzag_strength,
- # "shake": self.shake_strength,
- "cadence": self.cadence_strength,
- "slamBrake": self.slam_brake_strength,
- "slamAccelerate": self.slam_accel_strength
- }
- zigzag_list = [self.zigzag_count, self.zigzag_duration, self.zigzag_strength]
- # shake_list = [self.shake_count, self.shake_duration, self.shake_strength]
- cadence_list = [self.cadence_count, self.cadence_duration, self.cadence_strength]
- slam_brake_list = [self.slam_brake_count, self.slam_brake_duration, self.slam_brake_strength]
- slam_accel_list = [self.slam_accel_count, self.slam_accel_duration, self.slam_accel_strength]
- tmp_comf_arr = []
- if "zigzag" in self.metric_list:
- tmp_comf_arr += zigzag_list
- self.discomfort_count += self.zigzag_count
- # if "shake" in self.metric_list:
- # tmp_comf_arr += shake_list
- # self.discomfort_count += self.shake_count
- if "cadence" in self.metric_list:
- tmp_comf_arr += cadence_list
- self.discomfort_count += self.cadence_count
- if "slamBrake" in self.metric_list:
- tmp_comf_arr += slam_brake_list
- self.discomfort_count += self.slam_brake_count
- if "slamAccelerate" in self.metric_list:
- tmp_comf_arr += slam_accel_list
- self.discomfort_count += self.slam_accel_count
- comf_arr = [tmp_comf_arr]
- return comf_arr
- def _nan_detect(self, num):
- if math.isnan(num):
- return 0
- return num
- def custom_metric_param_parser(self, param_list):
- """
- param_dict = {
- "paramA" [
- {
- "kind": "-1",
- "optimal": "1",
- "multiple": ["0.5","5"],
- "spare1": null,
- "spare2": null
- }
- ]
- }
- """
- kind_list = []
- optimal_list = []
- multiple_list = []
- spare_list = []
- # spare1_list = []
- # spare2_list = []
- for i in range(len(param_list)):
- kind_list.append(int(param_list[i]['kind']))
- optimal_list.append(float(param_list[i]['optimal']))
- multiple_list.append([float(x) for x in param_list[i]['multiple']])
- spare_list.append([item["param"] for item in param_list[i]["spare"]])
- # spare1_list.append(param_list[i]['spare1'])
- # spare2_list.append(param_list[i]['spare2'])
- result = {
- "kind": kind_list,
- "optimal": optimal_list,
- "multiple": multiple_list,
- "spare": spare_list,
- # "spare1": spare1_list,
- # "spare2": spare2_list
- }
- return result
- def custom_metric_score(self, metric, value, param_list):
- """
- """
- param = self.custom_metric_param_parser(param_list)
- self.custom_param_dict[metric] = param
- score_model = self.scoreModel(param['kind'], param['optimal'], param['multiple'], np.array([value]))
- score_sub = score_model.cal_score()
- score = sum(score_sub) / len(score_sub)
- return score
- def comf_score_new(self):
- arr_comf = self.comf_statistic()
- print("\n[平顺性表现及得分情况]")
- print("平顺性各指标值:", [[round(num, 2) for num in row] for row in arr_comf])
- arr_comf = np.array(arr_comf)
- score_model = self.scoreModel(self.kind_list, self.optimal_list, self.multiple_list, arr_comf)
- score_sub = score_model.cal_score()
- score_sub = list(map(lambda x: 80 if np.isnan(x) else x, score_sub))
- metric_list = [x for x in self.metric_list if x in self.config.builtinMetricList]
- score_metric = []
- for i in range(len(metric_list)):
- score_tmp = (score_sub[i * 3 + 0] + score_sub[i * 3 + 1] + score_sub[i * 3 + 2]) / 3
- score_metric.append(round(score_tmp, 2))
- score_metric_dict = {key: value for key, value in zip(metric_list, score_metric)}
- custom_metric_list = list(self.customMetricParam.keys())
- for metric in custom_metric_list:
- value = self.custom_data[metric]['value']
- param_list = self.customMetricParam[metric]
- score = self.custom_metric_score(metric, value, param_list)
- score_metric_dict[metric] = round(score, 2)
- score_metric_dict = {key: score_metric_dict[key] for key in self.metric_list}
- score_metric = list(score_metric_dict.values())
- score_type_dict = {}
- if self.weight_custom: # 自定义权重
- score_metric_with_weight_dict = {key: score_metric_dict[key] * self.weight_dict[key] for key in
- self.weight_dict}
- for type in self.type_list:
- type_score = sum(
- value for key, value in score_metric_with_weight_dict.items() if key in self.metric_dict[type])
- score_type_dict[type] = round(type_score, 2)
- score_type_with_weight_dict = {key: score_type_dict[key] * self.weight_type_dict[key] for key in
- score_type_dict}
- score_comfort = sum(score_type_with_weight_dict.values())
- else: # 客观赋权
- self.weight_list = cal_weight_from_80(score_metric)
- self.weight_dict = {key: value for key, value in zip(self.metric_list, self.weight_list)}
- score_comfort = cal_score_with_priority(score_metric, self.weight_list, self.priority_list)
- for type in self.type_list:
- type_weight = sum(value for key, value in self.weight_dict.items() if key in self.metric_dict[type])
- self.weight_dict = {key: round(value / type_weight, 4) for key, value in self.weight_dict.items() if
- key in self.metric_dict[type]}
- type_score_metric = [value for key, value in score_metric_dict.items() if key in self.metric_dict[type]]
- type_weight_list = [value for key, value in self.weight_dict.items() if key in self.metric_dict[type]]
- type_priority_list = [value for key, value in self.priority_dict.items() if
- key in self.metric_dict[type]]
- type_score = cal_score_with_priority(type_score_metric, type_weight_list, type_priority_list)
- score_type_dict[type] = round(type_score, 2)
- score_comfort = round(score_comfort, 2)
- print("平顺性各指标基准值:", self.optimal_list)
- print(f"平顺性得分为:{score_comfort:.2f}分。")
- print(f"平顺性各类型得分为:{score_type_dict}。")
- print(f"平顺性各指标得分为:{score_metric_dict}。")
- return score_comfort, score_type_dict, score_metric_dict
- def zip_time_pairs(self, zip_list, upper_limit=9999):
- zip_time_pairs = zip(self.time_list, zip_list)
- zip_vs_time = [[x, upper_limit if y > upper_limit else y] for x, y in zip_time_pairs if not math.isnan(y)]
- return zip_vs_time
- def comf_weight_distribution(self):
- # get weight distribution
- weight_distribution = {}
- weight_distribution["name"] = "平顺性"
- if "comfortLat" in self.type_list:
- lat_weight_indexes_dict = {key: f"{key}({value * 100:.2f}%)" for key, value in self.weight_dict.items() if
- key in self.lat_metric_list}
- weight_distribution_lat = {
- "latWeight": f"横向舒适度({self.weight_type_dict['comfortLat'] * 100:.2f}%)",
- "indexes": lat_weight_indexes_dict
- }
- weight_distribution['comfortLat'] = weight_distribution_lat
- if "comfortLon" in self.type_list:
- lon_weight_indexes_dict = {key: f"{key}({value * 100:.2f}%)" for key, value in self.weight_dict.items() if
- key in self.lon_metric_list}
- weight_distribution_lon = {
- "lonWeight": f"纵向舒适度({self.weight_type_dict['comfortLon'] * 100:.2f}%)",
- "indexes": lon_weight_indexes_dict
- }
- weight_distribution['comfortLon'] = weight_distribution_lon
- return weight_distribution
- def _get_weight_distribution(self, dimension):
- # get weight distribution
- weight_distribution = {}
- weight_distribution["name"] = self.config.dimension_name[dimension]
- for type in self.type_list:
- type_weight_indexes_dict = {key: f"{self.name_dict[key]}({value * 100:.2f}%)" for key, value in
- self.weight_dict.items() if
- key in self.metric_dict[type]}
- weight_distribution_type = {
- "weight": f"{self.type_name_dict[type]}({self.weight_type_dict[type] * 100:.2f}%)",
- "indexes": type_weight_indexes_dict
- }
- weight_distribution[type] = weight_distribution_type
- return weight_distribution
- def report_statistic(self):
- """
- Returns:
- """
- # report_dict = {
- # "name": "平顺性",
- # "weight": f"{self.weight * 100:.2f}%",
- # "weightDistribution": weight_distribution,
- # "score": score_comfort,
- # "level": grade_comfort,
- # 'discomfortCount': self.discomfort_count,
- # "description1": comf_description1,
- # "description2": comf_description2,
- # "description3": comf_description3,
- # "description4": comf_description4,
- #
- # "comfortLat": lat_dict,
- # "comfortLon": lon_dict,
- #
- # "speData": ego_speed_vs_time,
- # "speMarkLine": discomfort_slices,
- #
- # "accData": lon_acc_vs_time,
- # "accMarkLine": discomfort_acce_slices,
- #
- # "anvData": yawrate_vs_time,
- # "anvMarkLine": discomfort_zigzag_slices,
- #
- # "anaData": yawrate_roc_vs_time,
- # "anaMarkLine": discomfort_zigzag_slices,
- #
- # "curData": [cur_ego_path_vs_time, curvature_vs_time],
- # "curMarkLine": discomfort_shake_slices,
- # }
- # brakePedal_list = self.data_processed.driver_ctrl_data['brakePedal_list']
- # throttlePedal_list = self.data_processed.driver_ctrl_data['throttlePedal_list']
- # steeringWheel_list = self.data_processed.driver_ctrl_data['steeringWheel_list']
- #
- # # common parameter calculate
- # brake_vs_time = self.zip_time_pairs(brakePedal_list, 100)
- # throttle_vs_time = self.zip_time_pairs(throttlePedal_list, 100)
- # steering_vs_time = self.zip_time_pairs(steeringWheel_list)
- report_dict = {
- "name": "平顺性",
- # "weight": f"{self.weight * 100:.2f}%",
- # 'discomfortCount': self.discomfort_count,
- }
- # upper_limit = 40
- # times_upper = 2
- # len_time = len(self.time_list)
- duration = self.time_list[-1]
- # comfort score and grade
- score_comfort, score_type_dict, score_metric_dict = self.comf_score_new()
- # get weight distribution
- # report_dict["weightDistribution"] = self._get_weight_distribution("comfort")
- score_comfort = int(score_comfort) if int(score_comfort) == score_comfort else round(score_comfort, 2)
- grade_comfort = score_grade(score_comfort)
- report_dict["score"] = score_comfort
- report_dict["level"] = grade_comfort
- # comfort data for graph
- ego_speed_list = self.ego_df['v'].values.tolist()
- ego_speed_vs_time = self.zip_time_pairs(ego_speed_list)
- lon_acc_list = self.ego_df['lon_acc'].values.tolist()
- lon_acc_vs_time = self.zip_time_pairs(lon_acc_list)
- yawrate_list = self.ego_df['speedH'].values.tolist()
- yawrate_vs_time = self.zip_time_pairs(yawrate_list)
- yawrate_roc_list = self.ego_df['accelH'].values.tolist()
- yawrate_roc_vs_time = self.zip_time_pairs(yawrate_roc_list)
- cur_ego_path_vs_time = self.zip_time_pairs(self.cur_ego_path_list)
- curvature_vs_time = self.zip_time_pairs(self.curvature_list)
- # markline
- # discomfort_df = self.discomfort_df.copy()
- # discomfort_df['type'] = "origin"
- # discomfort_slices = discomfort_df.to_dict('records')
- #
- # discomfort_zigzag_df = self.discomfort_df.copy()
- # discomfort_zigzag_df.loc[discomfort_zigzag_df['type'] != 'zigzag', 'type'] = "origin"
- # discomfort_zigzag_slices = discomfort_zigzag_df.to_dict('records')
- #
- # discomfort_shake_df = self.discomfort_df.copy()
- # discomfort_shake_df.loc[discomfort_shake_df['type'] != 'shake', 'type'] = "origin"
- # discomfort_shake_slices = discomfort_shake_df.to_dict('records')
- #
- # discomfort_acce_df = self.discomfort_df.copy()
- # discomfort_acce_df.loc[discomfort_acce_df['type'] == 'zigzag', 'type'] = "origin"
- # discomfort_acce_df.loc[discomfort_acce_df['type'] == 'shake', 'type'] = "origin"
- # discomfort_acce_slices = discomfort_acce_df.to_dict('records')
- # for description
- good_type_list = []
- bad_type_list = []
- good_metric_list = []
- bad_metric_list = []
- # str for comf description 1&2
- str_uncomf_count = ''
- str_uncomf_over_optimal = ''
- # type_details_dict = {}
- # for type in self.type_list:
- # bad_type_list.append(type) if score_type_dict[type] < 80 else good_type_list.append(type)
- #
- # type_dict = {
- # "name": f"{self.type_name_dict[type]}",
- # }
- #
- # builtin_graph_dict = {}
- # custom_graph_dict = {}
- #
- # score_type = score_type_dict[type]
- # grade_type = score_grade(score_type)
- # type_dict["score"] = score_type
- # type_dict["level"] = grade_type
- #
- # type_dict_indexes = {}
- #
- # flag_acc = False
- # for metric in self.metric_dict[type]:
- # bad_metric_list.append(metric) if score_metric_dict[metric] < 80 else good_metric_list.append(metric)
- #
- # if metric in self.bulitin_metric_list:
- # # for indexes
- # type_dict_indexes[metric] = {
- # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
- # "score": score_metric_dict[metric],
- # "numberReal": f"{self.count_dict[metric]}",
- # "numberRef": f"{self.optimal1_dict[metric]:.4f}",
- # "durationReal": f"{self.duration_dict[metric]:.2f}",
- # "durationRef": f"{self.optimal2_dict[metric]:.4f}",
- # "strengthReal": f"{self.strength_dict[metric]:.2f}",
- # "strengthRef": f"{self.optimal3_dict[metric]}"
- # }
- #
- # # for description
- # str_uncomf_count += f'{self.count_dict[metric]}次{self.name_dict[metric]}行为、'
- # if self.count_dict[metric] > self.optimal1_dict[metric]:
- # over_optimal = ((self.count_dict[metric] - self.optimal1_dict[metric]) / self.optimal1_dict[
- # metric]) * 100
- # str_uncomf_over_optimal += f'{self.name_dict[metric]}次数比基准值高{over_optimal:.2f}%,'
- #
- # if self.duration_dict[metric] > self.optimal2_dict[metric]:
- # over_optimal = ((self.duration_dict[metric] - self.optimal2_dict[metric]) / self.optimal2_dict[
- # metric]) * 100
- # str_uncomf_over_optimal += f'{self.name_dict[metric]}时长比基准值高{over_optimal:.2f}%,'
- #
- # if self.strength_dict[metric] > self.optimal3_dict[metric]:
- # over_optimal = ((self.strength_dict[metric] - self.optimal3_dict[metric]) / self.optimal3_dict[
- # metric]) * 100
- # str_uncomf_over_optimal += f'{self.name_dict[metric]}强度比基准值高{over_optimal:.2f}%;'
- #
- # # report_dict["speData"] = ego_speed_vs_time
- # # report_dict["accData"] = lon_acc_vs_time
- # # report_dict["anvData"] = yawrate_vs_time
- # # report_dict["anaData"] = yawrate_roc_vs_time
- # # report_dict["curData"] = [cur_ego_path_vs_time, curvature_vs_time]
- #
- # # report_dict["speMarkLine"] = discomfort_slices
- # # report_dict["accMarkLine"] = discomfort_acce_slices
- # # report_dict["anvMarkLine"] = discomfort_zigzag_slices
- # # report_dict["anaMarkLine"] = discomfort_zigzag_slices
- # # report_dict["curMarkLine"] = discomfort_shake_slices
- #
- # if metric == "zigzag":
- # metric_data = {
- # "name": "横摆角加速度(rad/s²)",
- # "data": yawrate_roc_vs_time,
- # "range": f"[0, {self.optimal3_dict[metric]}]",
- # # "markLine": discomfort_zigzag_slices
- # }
- # builtin_graph_dict[metric] = metric_data
- #
- # elif metric == "shake":
- # metric_data = {
- # "name": "曲率(1/m)",
- # "legend": ["自车轨迹曲率", "车道中心线曲率"],
- # "data": [cur_ego_path_vs_time, curvature_vs_time],
- # "range": f"[0, {self.optimal3_dict[metric]}]",
- # # "markLine": discomfort_shake_slices
- # }
- # builtin_graph_dict[metric] = metric_data
- #
- # elif metric in ["cadence", "slamBrake", "slamAccelerate"] and not flag_acc:
- # metric_data = {
- # "name": "自车纵向加速度(m/s²)",
- # "data": lon_acc_vs_time,
- # "range": f"[0, {self.optimal3_dict[metric]}]",
- # # "markLine": discomfort_acce_slices
- # }
- # flag_acc = True
- #
- # builtin_graph_dict[metric] = metric_data
- #
- # else:
- # # for indexes
- # type_dict_indexes[metric] = {
- # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})",
- # "score": score_metric_dict[metric],
- # "numberReal": f"{self.custom_data[metric]['tableData']['avg']}",
- # "numberRef": f"-",
- # "durationReal": f"{self.custom_data[metric]['tableData']['max']}",
- # "durationRef": f"-",
- # "strengthReal": f"{self.custom_data[metric]['tableData']['min']}",
- # "strengthRef": f"-"
- # }
- # custom_graph_dict[metric] = self.custom_data[metric]['reportData']
- #
- # str_uncomf_over_optimal = str_uncomf_over_optimal[:-1] + ";"
- # type_dict["indexes"] = type_dict_indexes
- # type_dict["builtin"] = builtin_graph_dict
- # type_dict["custom"] = custom_graph_dict
- #
- # type_details_dict[type] = type_dict
- # report_dict["details"] = type_details_dict
- # str for comf description2
- # if grade_comfort == '优秀':
- # comf_description1 = '机器人在本轮测试中行驶平顺;'
- # elif grade_comfort == '良好':
- # comf_description1 = '机器人在本轮测试中的表现满⾜设计指标要求;'
- # elif grade_comfort == '一般':
- # str_bad_metric = string_concatenate(bad_metric_list)
- # comf_description1 = f'未满足设计指标要求。需要在{str_bad_metric}上进一步优化。在{(self.mileage / 1000):.2f}公里内,共发生{str_uncomf_count[:-1]};'
- # elif grade_comfort == '较差':
- # str_bad_metric = string_concatenate(bad_metric_list)
- # comf_description1 = f'机器人行驶极不平顺,未满足设计指标要求。需要在{str_bad_metric}上进一步优化。在{(self.mileage / 1000):.2f}公里内,共发生{str_uncomf_count[:-1]};'
- #
- # if not bad_metric_list:
- # str_comf_type = string_concatenate(good_metric_list)
- # comf_description2 = f"{str_comf_type}均表现良好"
- # else:
- # str_bad_metric = string_concatenate(bad_metric_list)
- #
- # if not good_metric_list:
- # comf_description2 = f"{str_bad_metric}表现不佳。其中{str_uncomf_over_optimal}"
- # else:
- # str_comf_type = string_concatenate(good_metric_list)
- # comf_description2 = f"{str_comf_type}表现良好;{str_bad_metric}表现不佳。其中{str_uncomf_over_optimal}"
- #
- # # str for comf description3
- # control_type = []
- # if 'zigzag' in bad_metric_list or 'shake' in bad_metric_list:
- # control_type.append('横向')
- # if 'cadence' in bad_metric_list or 'slamBrake' in bad_metric_list or 'slamAccelerate' in bad_metric_list in bad_metric_list:
- # control_type.append('纵向')
- # str_control_type = '和'.join(control_type)
- #
- # if not control_type:
- # comf_description3 = f"机器人的横向和纵向控制表现俱佳,行驶平顺"
- # else:
- # comf_description3 = f"应该优化对机器人的{str_control_type}控制,优化行驶平顺性"
- #
- # uncomf_time = self.discomfort_duration
- # if uncomf_time == 0:
- # comf_description4 = ""
- # else:
- # percent4 = uncomf_time / duration * 100
- # # comf_description4 = f"在{duration}s时间内,机器人有{percent4:.2f}%的时间存在行驶不平顺的情况。"
- # comf_description4 = f"在{duration}s时间内,机器人有{uncomf_time:.2f}s的时间存在行驶不平顺的情况。"
- # report_dict["description1"] = replace_key_with_value(comf_description1, self.name_dict)
- # report_dict["description2"] = replace_key_with_value(comf_description2, self.name_dict)
- # report_dict["description3"] = comf_description3
- # report_dict["description4"] = comf_description4
- description = "· 在平顺性方面,"
- if any(score_metric_dict[metric] < 80 for metric in self.lon_metric_list):
- description += "线加速度变化剧烈,"
- tmp = [metric for metric in self.lon_metric_list if score_metric_dict[metric] < 80]
- str_tmp = "、".join(tmp)
- description += f"有{str_tmp}情况,需重点优化。"
- if any(score_metric_dict[metric] < 80 for metric in self.lat_metric_list):
- description += "角加速度变化剧烈,"
- tmp = [metric for metric in self.lat_metric_list if score_metric_dict[metric] < 80]
- str_tmp = "、".join(tmp)
- description += f"有{str_tmp}情况,需重点优化。"
- if description == "在平顺性方面,":
- description += f"线加速度和角加速度变化平顺,表现{grade_comfort}。"
- report_dict["description"] = replace_key_with_value(description, self.name_dict)
- description1 = f"最大值:{self.linear_accel_dict['max']:.4f}m/s²;" \
- f"最小值:{self.linear_accel_dict['min']:.4f}m/s²;" \
- f"平均值:{self.linear_accel_dict['avg']:.4f}m/s²"
- description2 = f"最大值:{self.angular_accel_dict['max']:.4f}rad/s²;" \
- f"最小值:{self.angular_accel_dict['min']:.4f}rad/s²;" \
- f"平均值:{self.angular_accel_dict['avg']:.4f}rad/s²"
- report_dict["description1"] = description1
- report_dict["description2"] = description2
- plt.figure(figsize=(12, 3))
- plt.plot(self.time_list, self.accel_list, label='Linear Accelerate')
- plt.xlabel('Time(s)')
- plt.ylabel('Linear Accelerate(m/s^2)')
- plt.legend()
- # 调整布局,消除空白边界
- plt.tight_layout()
- plt.savefig(os.path.join(self.resultPath, "LinearAccelerate.png"))
- plt.close()
- plt.figure(figsize=(12, 3))
- plt.plot(self.time_list, self.accelH_list, label='Angular Accelerate')
- plt.xlabel('Time(s)')
- plt.ylabel('Angular Accelerate(rad/s^2)')
- plt.legend()
- # 调整布局,消除空白边界
- plt.tight_layout()
- plt.savefig(os.path.join(self.resultPath, "AngularAccelerate.png"))
- plt.close()
- print(report_dict)
- # report_dict['commonData'] = {
- # # "per": {
- # # "name": "刹车/油门踏板开度(百分比)",
- # # "legend": ["刹车踏板开度", "油门踏板开度"],
- # # "data": [brake_vs_time, throttle_vs_time]
- # # },
- # # "ang": {
- # # "name": "方向盘转角(角度°)",
- # # "data": steering_vs_time
- # # },
- # "spe": {
- # "name": "速度(km/h)",
- # # "legend": ["自车速度", "目标车速度", "自车与目标车相对速度"],
- # "data": ego_speed_vs_time
- #
- # },
- # # "acc": {
- # # "name": "自车纵向加速度(m/s²)",
- # # "data": lon_acc_vs_time
- # #
- # # },
- # # "dis": {
- # # "name": "前车距离(m)",
- # # "data": distance_vs_time
- # # }
- # }
- # report_dict["commonMarkLine"] = discomfort_slices
- # report_dict = {
- # "name": "平顺性",
- # "weight": f"{self.weight * 100:.2f}%",
- # "weightDistribution": weight_distribution,
- # "score": score_comfort,
- # "level": grade_comfort,
- # 'discomfortCount': self.discomfort_count,
- # "description1": comf_description1,
- # "description2": comf_description2,
- # "description3": comf_description3,
- # "description4": comf_description4,
- #
- # "comfortLat": lat_dict,
- # "comfortLon": lon_dict,
- #
- # "speData": ego_speed_vs_time,
- # "speMarkLine": discomfort_slices,
- #
- # "accData": lon_acc_vs_time,
- # "accMarkLine": discomfort_acce_slices,
- #
- # "anvData": yawrate_vs_time,
- # "anvMarkLine": discomfort_zigzag_slices,
- #
- # "anaData": yawrate_roc_vs_time,
- # "anaMarkLine": discomfort_zigzag_slices,
- #
- # "curData": [cur_ego_path_vs_time, curvature_vs_time],
- # "curMarkLine": discomfort_shake_slices,
- # }
- # self.eval_data = self.ego_df.copy()
- # self.eval_data['playerId'] = 1
- return report_dict
- def get_eval_data(self):
- df = self.eval_data[
- ['simTime', 'simFrame', 'playerId', 'ip_acc', 'ip_dec', 'slam_brake', 'slam_accel', 'cadence']].copy()
- return df
|