# -*-ing:utf-8-*-
import os
import sys
from datetime import datetime
import traceback
import json
import math
import pandas as pd
import subprocess
import time
import multiprocessing  # 导入进程模块
from functools import partial  # 导入偏函数
import warnings

warnings.filterwarnings("ignore")
from openx import Scenario, formatThree, formatTwo, change_CDATA
import osgbGenerator
from utils import smooth_1, get_coordinate_cow, get_map_name, reverse_gyb_gps


class Batchrun:
    def __init__(self, path, keyFileName):
        """"初始化方法"""
        self.path = path
        self.keyFileName = keyFileName

    def getFile(self, path, keyFileName):
        '''
        获得可以进行轨迹提取的所有片段文件夹路径

        Parameters
        ----------
        path : TYPE
            DESCRIPTION.

        Returns
        -------
        FileList : TYPE
            可以进行轨迹提取的所有片段文件夹路径.

        '''
        files = os.listdir(path)  # 得到文件夹下的所有文件,包含文件夹名称

        FileList = []
        if keyFileName not in files:
            for name in files:
                if os.path.isdir(path + '/' + name):
                    FileList.extend(self.getFile(path + '/' + name, keyFileName))  # 回调函数,对所有子文件夹进行搜索
        else:
            FileList.append(path)
        FileList = list(set(FileList))

        return FileList

    def generateScenarios_raw(self, absPath, param):
        '''
        原始自然驾驶场景还原
        '''

        # 读取自车数据
        posPath = os.path.join(absPath, param)  # 用来生成场景中自车和他车的路径
        posdata = pd.read_csv(posPath)

        # 读取仿真地图数据
        offset_x = -457000.0
        offset_y = -4400000.0
        # offset_h = 90 # 初始headinga 和 VTD 有 90偏角
        offset_h = 0

        # 对感知数据进行后处理
        # 对公园北环路进行坐标转换

        # 根据pos文件规范时间戳
        posdata['Time'] = posdata['Time'].apply(lambda x: (x // 100) * 100)
        # 绝对高程与相对高程的差值
        posdata['altitude'] = 19.27

        # posdata['Type'].replace({8:2, 10:2}, inplace=True)

        pos_ego = posdata.loc[posdata['ID'] == -1, ['Time', 'East', 'North', 'HeadingAngle', 'altitude', 'Type']]
        # pos_ego[['East', 'North']] = pos_ego.apply(get_coordinate_cow, axis=1)
        # pos_ego = posdata.loc[posdata['ID'] == -1, ['Time', 'position_x', 'position_y', 'HeadingAngle', 'Type']]
        pos_ego = pos_ego.reset_index(drop=True)

        # offset_x = -float(pos_ego.at[0, 'East'])  # 初始East 设为0
        # offset_y = -float(pos_ego.at[0, 'North']) # 初始North 设为0

        start_time = pos_ego.at[0, 'Time']
        ego_points, gps_time, ego_type = Scenario.getXoscPosition(pos_ego, 'Time', 'East', 'North', 'HeadingAngle',
                                                                  'altitude', 'Type', offset_x, offset_y, offset_h,
                                                                  start_time)
        # ego_points, gps_time, ego_type = Scenario.getXoscPosition(pos_ego, 'Time', 'position_x', 'position_y', 'HeadingAngle', 'Type', offset_x, offset_y, offset_h, start_time)

        # 读取目标数据
        pos_obs = posdata  # 排除非目标物的物体
        # pos_obs = posdata[posdata['Type'] != 10]  # 排除非目标物的物体
        pos_obs = pos_obs.loc[
            pos_obs['ID'] != -1, ['Time', 'ID', 'East', 'North', 'HeadingAngle', 'AbsVel', 'altitude', 'Type']]
        # pos_obs = pos_obs.loc[pos_obs['ID'] != -1, ['Time', 'ID', 'position_x', 'position_y', 'HeadingAngle', 'Type']]
        # !!!!自定义修改
        # pos_obs.loc[pos_obs['ID'] == 1200, 'type'] = 7
        # pos_obs.loc[pos_obs['ID'] == 1197, 'type'] = 7
        # pos_obs.loc[pos_obs['ID'] == 1200, 'position_x'] += 1
        # pos_obs.loc[pos_obs['ID'] == 1200, 'position_y'] -= 2
        # pos_obs.loc[pos_obs['ID'] == 1197, 'position_x'] += 1
        # pos_obs.loc[pos_obs['ID'] == 1197, 'position_y'] -= 1
        # pos_obs.loc[pos_obs['ID'] == 1203, 'type'] = 4
        # pos_obs.loc[pos_obs['ID'] == 1203, 'position_x'] = 456319
        # pos_obs.loc[pos_obs['ID'] == 1203, 'position_y'] = 4397979
        # pos_obs.loc[pos_obs['ID'] == 1203, 'HeadingAngle'] = 1
        # offset_h = 30
        # pos_obs.loc[pos_obs['ID'] == 1194, 'type'] = 7
        # pos_obs.loc[pos_obs['ID'] == 1188, 'type'] = 2
        # pos_obs.loc[pos_obs['ID'] == 1189, 'type'] = 2
        # pos_obs.loc[pos_obs['ID'] == 1195, 'type'] = 2
        # obsPath = os.path.join(absPath, 'obs.csv') # 用来筛选场景中不需要的他车
        # obsdata = pd.read_csv(obsPath)
        # obsdata = obsdata[(obsdata['ObjectPosY'] < 5) & (obsdata['ObjectPosY'] > -5) & (obsdata['ObjectPosX'] > -10) & (obsdata['ObjectPosX'] < 100)]  # 排除车道线范围外且前向距离较远的目标物
        # idlist = obsdata['ObjectID'].tolist()  # 筛选出符合条件的的目标物ID
        # pos_obs = pos_obs[(pos_obs['ID'].isin(idlist))]
        pos_obs = pos_obs.reset_index(drop=True)

        groups = pos_obs.groupby('ID')
        object_points = []
        for key, value in groups:
            if len(value) < 5:
                continue
            # value = smooth_1(value)
            object_points.append(
                Scenario.getXoscPosition(value, 'Time', 'East', 'North', 'HeadingAngle', 'altitude', 'Type', offset_x,
                                         offset_y, offset_h, start_time))
            # object_points.append(Scenario.getXoscPosition(value, 'Time', 'position_x', 'position_y', 'HeadingAngle', 'type', offset_x, offset_y, offset_h,start_time))

        ego_speed = 5
        period = math.ceil(gps_time[-1] - gps_time[0])
        work_mode = 0  # 0为CICV车端数据
        hour = int(absPath.split('/')[-1].split('-')[3])
        if hour + 8 >= 24:
            hour = hour - 16
        else:
            hour = hour + 8
        time_of_day = hour * 3600
        # 没有路灯防止天过暗
        if time_of_day >= 64800:
            time_of_day = 64800
        s = Scenario(ego_points, object_points, gps_time, ego_speed, work_mode, period, absPath, time_of_day)
        filename = absPath + '/simulation' + '_' + param.split("_")[1].split(".")[0]
        files = s.generate(filename)

        change_CDATA(files[0][0])
        print(files)

        # 生成osgb
        # osgbGenerator.formatTwo(filename)

        # 修改xosc路径
        # formatThree(filename)
        # # # 生成每个场景的描述文件 json
        # # getLabel(output_path, scenario_series['场景编号'], scenario_series['场景名称'])

        # 拷贝到vtd路径下
        # vtd_path = os.path.join('/home/lxj/VIRES/VTD.2021.3/Data/Projects/Current/Scenarios/myScenario', datetime.now().strftime("%Y%m%d%H%M%S"))
        # if not os.path.exists(vtd_path):
        #     os.makedirs(vtd_path)
        # os.system('cp '+ files[0][0] + ' ' + vtd_path + '/')

    def multiRun(self, path, param):
        files = self.getFile(path, self.keyFileName)

        print('程序开始,%s 个数据包' % len(files))

        t1 = time.time()
        # 无参数时,使用所有cpu核;  有参数时,使用CPU核数量为参数值
        pool = multiprocessing.Pool(processes=10)
        pfunc = partial(self.generateScenarios_raw, param)
        pool.map(pfunc, files)
        # 调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
        pool.close()
        pool.join()
        t2 = time.time()
        print("程序结束,并行执行时间:%s s" % int(t2 - t1))

    def batchRun(self, path, param):
        files = self.getFile(path, self.keyFileName)

        print('程序开始,%s 个数据包' % len(files))

        for di, absPath in enumerate(sorted(files)):
            print(absPath)
            # try:
            self.generateScenarios_raw(absPath, param)
            # except:
            #     print('Augmentation failed!!!!')
            #     error = {'time':datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3],'traceback':traceback.format_exc()}
            #     with open('error.log','a+') as f:
            #         json.dump(error, f, indent=4)
            #         f.write('\n')
            # print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
        return None

    def GenerateVideo(self, root_path):
        # 批量生成视频
        imagelist = self.getFile(root_path, 'image')
        for item in imagelist:
            strs = item.split('/')
            respath = os.path.join(item, "video.mp4")
            # respath = os.path.join(res_path,strs[-3],strs[-2],"video.mp4")
            print('---------------------')
            # os.makedirs(os.path.join(res_path,strs[-3],strs[-2]))
            command = "ffmpeg -f image2 -r 10 -pattern_type glob -i '" + item + "/image/*.jpg" + "' -y '" + respath + "'"
            print(command)
            process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
            process.wait()


if __name__ == "__main__":
    # rootPath = "/media/hancheng/Simulation5/pjisuv_pjisuv95_data_merge_2024-01-31-07-53-50_TTC_11"  # 跟车
    rootPath = sys.argv[1]  # 跟车
    # 生成场景
    a = Batchrun(rootPath, "pos_orig.csv")
    a.batchRun(rootPath, 'pos_orig.csv')
    # a.batchRun(rootPath, 'pos_hmi.csv')
    # a.multiRun(rootPath, 0)

    # 生成视频
    # a.GenerateVideo(rootPath)