123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 |
- # -*-ing:utf-8-*-
- import os
- import sys
- from datetime import datetime
- import traceback
- import json
- import math
- import pandas as pd
- import subprocess
- import time
- import multiprocessing # 导入进程模块
- from functools import partial # 导入偏函数
- import warnings
- warnings.filterwarnings("ignore")
- from openx import Scenario, formatThree, formatTwo, change_CDATA
- import osgbGenerator
- from utils import smooth_1, get_coordinate_cow, get_map_name, reverse_gyb_gps
- class Batchrun:
- def __init__(self, path, keyFileName):
- """"初始化方法"""
- self.path = path
- self.keyFileName = keyFileName
- def getFile(self, path, keyFileName):
- '''
- 获得可以进行轨迹提取的所有片段文件夹路径
- Parameters
- ----------
- path : TYPE
- DESCRIPTION.
- Returns
- -------
- FileList : TYPE
- 可以进行轨迹提取的所有片段文件夹路径.
- '''
- files = os.listdir(path) # 得到文件夹下的所有文件,包含文件夹名称
- FileList = []
- if keyFileName not in files:
- for name in files:
- if os.path.isdir(path + '/' + name):
- FileList.extend(self.getFile(path + '/' + name, keyFileName)) # 回调函数,对所有子文件夹进行搜索
- else:
- FileList.append(path)
- FileList = list(set(FileList))
- return FileList
- def generateScenarios_raw(self, absPath, param):
- '''
- 原始自然驾驶场景还原
- '''
- # 读取自车数据
- posPath = os.path.join(absPath, param) # 用来生成场景中自车和他车的路径
- posdata = pd.read_csv(posPath)
- # 读取仿真地图数据
- offset_x = -457000.0
- offset_y = -4400000.0
- # offset_h = 90 # 初始headinga 和 VTD 有 90偏角
- offset_h = 0
- # 对感知数据进行后处理
- # 对公园北环路进行坐标转换
- # 根据pos文件规范时间戳
- posdata['Time'] = posdata['Time'].apply(lambda x: (x // 100) * 100)
- # 绝对高程与相对高程的差值
- posdata['altitude'] = 19.27
- # posdata['Type'].replace({8:2, 10:2}, inplace=True)
- pos_ego = posdata.loc[posdata['ID'] == -1, ['Time', 'East', 'North', 'HeadingAngle', 'altitude', 'Type']]
- # pos_ego[['East', 'North']] = pos_ego.apply(get_coordinate_cow, axis=1)
- # pos_ego = posdata.loc[posdata['ID'] == -1, ['Time', 'position_x', 'position_y', 'HeadingAngle', 'Type']]
- pos_ego = pos_ego.reset_index(drop=True)
- # offset_x = -float(pos_ego.at[0, 'East']) # 初始East 设为0
- # offset_y = -float(pos_ego.at[0, 'North']) # 初始North 设为0
- start_time = pos_ego.at[0, 'Time']
- ego_points, gps_time, ego_type = Scenario.getXoscPosition(pos_ego, 'Time', 'East', 'North', 'HeadingAngle',
- 'altitude', 'Type', offset_x, offset_y, offset_h,
- start_time)
- # ego_points, gps_time, ego_type = Scenario.getXoscPosition(pos_ego, 'Time', 'position_x', 'position_y', 'HeadingAngle', 'Type', offset_x, offset_y, offset_h, start_time)
- # 读取目标数据
- pos_obs = posdata # 排除非目标物的物体
- # pos_obs = posdata[posdata['Type'] != 10] # 排除非目标物的物体
- pos_obs = pos_obs.loc[
- pos_obs['ID'] != -1, ['Time', 'ID', 'East', 'North', 'HeadingAngle', 'AbsVel', 'altitude', 'Type']]
- # pos_obs = pos_obs.loc[pos_obs['ID'] != -1, ['Time', 'ID', 'position_x', 'position_y', 'HeadingAngle', 'Type']]
- # !!!!自定义修改
- # pos_obs.loc[pos_obs['ID'] == 1200, 'type'] = 7
- # pos_obs.loc[pos_obs['ID'] == 1197, 'type'] = 7
- # pos_obs.loc[pos_obs['ID'] == 1200, 'position_x'] += 1
- # pos_obs.loc[pos_obs['ID'] == 1200, 'position_y'] -= 2
- # pos_obs.loc[pos_obs['ID'] == 1197, 'position_x'] += 1
- # pos_obs.loc[pos_obs['ID'] == 1197, 'position_y'] -= 1
- # pos_obs.loc[pos_obs['ID'] == 1203, 'type'] = 4
- # pos_obs.loc[pos_obs['ID'] == 1203, 'position_x'] = 456319
- # pos_obs.loc[pos_obs['ID'] == 1203, 'position_y'] = 4397979
- # pos_obs.loc[pos_obs['ID'] == 1203, 'HeadingAngle'] = 1
- # offset_h = 30
- # pos_obs.loc[pos_obs['ID'] == 1194, 'type'] = 7
- # pos_obs.loc[pos_obs['ID'] == 1188, 'type'] = 2
- # pos_obs.loc[pos_obs['ID'] == 1189, 'type'] = 2
- # pos_obs.loc[pos_obs['ID'] == 1195, 'type'] = 2
- # obsPath = os.path.join(absPath, 'obs.csv') # 用来筛选场景中不需要的他车
- # obsdata = pd.read_csv(obsPath)
- # obsdata = obsdata[(obsdata['ObjectPosY'] < 5) & (obsdata['ObjectPosY'] > -5) & (obsdata['ObjectPosX'] > -10) & (obsdata['ObjectPosX'] < 100)] # 排除车道线范围外且前向距离较远的目标物
- # idlist = obsdata['ObjectID'].tolist() # 筛选出符合条件的的目标物ID
- # pos_obs = pos_obs[(pos_obs['ID'].isin(idlist))]
- pos_obs = pos_obs.reset_index(drop=True)
- groups = pos_obs.groupby('ID')
- object_points = []
- for key, value in groups:
- if len(value) < 5:
- continue
- # value = smooth_1(value)
- object_points.append(
- Scenario.getXoscPosition(value, 'Time', 'East', 'North', 'HeadingAngle', 'altitude', 'Type', offset_x,
- offset_y, offset_h, start_time))
- # object_points.append(Scenario.getXoscPosition(value, 'Time', 'position_x', 'position_y', 'HeadingAngle', 'type', offset_x, offset_y, offset_h,start_time))
- ego_speed = 5
- period = math.ceil(gps_time[-1] - gps_time[0])
- work_mode = 0 # 0为CICV车端数据
- hour = int(absPath.split('/')[-1].split('-')[3])
- if hour + 8 >= 24:
- hour = hour - 16
- else:
- hour = hour + 8
- time_of_day = hour * 3600
- # 没有路灯防止天过暗
- if time_of_day >= 64800:
- time_of_day = 64800
- s = Scenario(ego_points, object_points, gps_time, ego_speed, work_mode, period, absPath, time_of_day)
- filename = absPath + '/simulation' + '_' + param.split("_")[1].split(".")[0]
- files = s.generate(filename)
- change_CDATA(files[0][0])
- print(files)
- # 生成osgb
- # osgbGenerator.formatTwo(filename)
- # 修改xosc路径
- # formatThree(filename)
- # # # 生成每个场景的描述文件 json
- # # getLabel(output_path, scenario_series['场景编号'], scenario_series['场景名称'])
- # 拷贝到vtd路径下
- # vtd_path = os.path.join('/home/lxj/VIRES/VTD.2021.3/Data/Projects/Current/Scenarios/myScenario', datetime.now().strftime("%Y%m%d%H%M%S"))
- # if not os.path.exists(vtd_path):
- # os.makedirs(vtd_path)
- # os.system('cp '+ files[0][0] + ' ' + vtd_path + '/')
- def multiRun(self, path, param):
- files = self.getFile(path, self.keyFileName)
- print('程序开始,%s 个数据包' % len(files))
- t1 = time.time()
- # 无参数时,使用所有cpu核; 有参数时,使用CPU核数量为参数值
- pool = multiprocessing.Pool(processes=10)
- pfunc = partial(self.generateScenarios_raw, param)
- pool.map(pfunc, files)
- # 调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
- pool.close()
- pool.join()
- t2 = time.time()
- print("程序结束,并行执行时间:%s s" % int(t2 - t1))
- def batchRun(self, path, param):
- files = self.getFile(path, self.keyFileName)
- print('程序开始,%s 个数据包' % len(files))
- for di, absPath in enumerate(sorted(files)):
- print(absPath)
- # try:
- self.generateScenarios_raw(absPath, param)
- # except:
- # print('Augmentation failed!!!!')
- # error = {'time':datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3],'traceback':traceback.format_exc()}
- # with open('error.log','a+') as f:
- # json.dump(error, f, indent=4)
- # f.write('\n')
- # print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
- return None
- def GenerateVideo(self, root_path):
- # 批量生成视频
- imagelist = self.getFile(root_path, 'image')
- for item in imagelist:
- strs = item.split('/')
- respath = os.path.join(item, "video.mp4")
- # respath = os.path.join(res_path,strs[-3],strs[-2],"video.mp4")
- print('---------------------')
- # os.makedirs(os.path.join(res_path,strs[-3],strs[-2]))
- command = "ffmpeg -f image2 -r 10 -pattern_type glob -i '" + item + "/image/*.jpg" + "' -y '" + respath + "'"
- print(command)
- process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
- process.wait()
- if __name__ == "__main__":
- # rootPath = "/media/hancheng/Simulation5/pjisuv_pjisuv95_data_merge_2024-01-31-07-53-50_TTC_11" # 跟车
- rootPath = sys.argv[1] # 跟车
- # 生成场景
- a = Batchrun(rootPath, "pos_orig.csv")
- a.batchRun(rootPath, 'pos_orig.csv')
- # a.batchRun(rootPath, 'pos_hmi.csv')
- # a.multiRun(rootPath, 0)
- # 生成视频
- # a.GenerateVideo(rootPath)
|