#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################## # # Copyright (c) 2023 CICV, Inc. All Rights Reserved # ################################################################## """ @Authors: yangzihao(yangzihao@china-icv.cn) @Data: 2024/02/21 @Last Modified: 2024/02/21 @Summary: The template of custom indicator. """ import pandas as pd import numpy as np from common import zip_time_pairs, continuous_group, continous_judge from log import logger """import functions""" # def zip_time_pairs(time_list, zip_list): # zip_time_pairs = zip(time_list, zip_list) # zip_vs_time = [[x, y] for x, y in zip_time_pairs if not math.isnan(y)] # return zip_vs_time # def continuous_group(df): # time_list = df['simTime'].values.tolist() # frame_list = df['simFrame'].values.tolist() # # group_time = [] # group_frame = [] # sub_group_time = [] # sub_group_frame = [] # # for i in range(len(frame_list)): # if not sub_group_time or frame_list[i] - frame_list[i - 1] <= 1: # sub_group_time.append(time_list[i]) # sub_group_frame.append(frame_list[i]) # else: # group_time.append(sub_group_time) # group_frame.append(sub_group_frame) # sub_group_time = [time_list[i]] # sub_group_frame = [frame_list[i]] # # group_time.append(sub_group_time) # group_frame.append(sub_group_frame) # group_time = [g for g in group_time if len(g) >= 2] # group_frame = [g for g in group_frame if len(g) >= 2] # # # 输出图表值 # time = [[g[0], g[-1]] for g in group_time] # frame = [[g[0], g[-1]] for g in group_frame] # # time_df = pd.DataFrame(time, columns=['start_time', 'end_time']) # frame_df = pd.DataFrame(frame, columns=['start_frame', 'end_frame']) # # result_df = pd.concat([time_df, frame_df], axis=1) # # return result_df # def continous_judge(frame_list): # if not frame_list: # return 0 # # cnt = 1 # for i in range(1, len(frame_list)): # if frame_list[i] - frame_list[i - 1] <= 3: # continue # cnt += 1 # return cnt # custom metric codes class CustomMetric(object): def __init__(self, all_data, case_name): self.data = all_data self.case_name = case_name self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type']) self.result = { "name": "车道偏离漏预警次数(次)", "value": [], # "weight": [], "tableData": { "avg": "", # 平均值,或指标值 "max": "", "min": "" }, "reportData": { "name": "车道线距离(m)", # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"] "data": [], "markLine": [], "range": [], } } self.run() def data_extract(self): self.ego_df = self.data.ego_data self.df_roadmark = self.data.road_mark_df line_dist_df = self.df_roadmark[(self.df_roadmark['id'] == 0) | (self.df_roadmark['id'] == 2)].copy() df = line_dist_df.groupby('simFrame').apply(lambda t: abs(t['lateralDist']).min()).reset_index() df.columns = ["simFrame", "line_dist"] self.ego_df = pd.merge(self.ego_df, df, on='simFrame', how='left') self.df = self.ego_df[['simTime', 'simFrame', 'LKA_status', 'line_dist']].copy() def data_analyze(self): ldw_df = self.df # count miss warning miss_warning_df = ldw_df[(ldw_df['line_dist'] <= 0.4) & (ldw_df['LKA_status'] != "Active")] miss_warning_frame_list = miss_warning_df['simFrame'].values.tolist() miss_warning_count = continous_judge(miss_warning_frame_list) self.result['value'].append(miss_warning_count) def markline_statistic(self): metric_df = self.df[['simTime', 'simFrame', 'line_dist']].copy() m_df = metric_df[metric_df['line_dist'] < 0.4] # 与车道线距离过近 m_df_continuous = continuous_group(m_df) m_df_continuous['type'] = 'LDW' self.markline_df = pd.concat([self.markline_df, m_df_continuous], ignore_index=True) def report_data_statistic(self): time_list = self.df['simTime'].values.tolist() line_dist_list = self.df['line_dist'].values.tolist() graph_list = [x for x in line_dist_list if not np.isnan(x)] self.result['tableData']['avg'] = f'{np.mean(graph_list):.2f}' if graph_list else 0 self.result['tableData']['max'] = f'{max(graph_list):.2f}' if graph_list else 0 self.result['tableData']['min'] = f'{min(graph_list):.2f}' if graph_list else 0 zip_vs_time = zip_time_pairs(time_list, line_dist_list) self.result['reportData']['data'] = zip_vs_time self.markline_statistic() markline_slices = self.markline_df.to_dict('records') self.result['reportData']['markLine'] = markline_slices self.result['reportData']['range'] = f"[0, 0.4]" def run(self): # logger.info(f"Custom metric run:[{self.result['name']}].") logger.info(f"[case:{self.case_name}] Custom metric:[ldw_miss_warning_count:{self.result['name']}] evaluate.") try: self.data_extract() except Exception as e: logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e) try: self.data_analyze() except Exception as e: logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e) try: self.report_data_statistic() except Exception as e: logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e) # if __name__ == "__main__": # pass