cicv_acc_04_overshoot_cruise_new.py 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen, yangzihao
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. """
  17. import math
  18. import pandas as pd
  19. import numpy as np
  20. from common import zip_time_pairs, continuous_group, get_status_active_data
  21. from log import logger
  22. """import functions"""
  23. # custom metric codes
  24. Max_Time = 1000
  25. class CustomMetric(object):
  26. def __init__(self, all_data, case_name):
  27. self.data = all_data
  28. self.optimal_dict = self.data.config
  29. self.status_trigger_dict = self.data.status_trigger_dict
  30. self.case_name = case_name
  31. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  32. self.graph_list = []
  33. self.df = pd.DataFrame()
  34. self.ego_df = pd.DataFrame()
  35. self.df_acc = pd.DataFrame()
  36. self.ica_flag = False
  37. self.stable_average_speed = None
  38. self.overshoot_cruise = None
  39. self.result = {
  40. "name": "定速巡航超调量",
  41. "value": [],
  42. # "weight": [],
  43. "tableData": {
  44. "avg": "", # 平均值,或指标值
  45. "max": "",
  46. "min": ""
  47. },
  48. "reportData": {
  49. "name": "ACC 定速巡航超调量(%)",
  50. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  51. "data": [],
  52. "markLine": [],
  53. "range": [],
  54. },
  55. "statusFlag": {}
  56. }
  57. self.run()
  58. print(f"ACC: 定速巡航超调量: {self.result['value']}")
  59. def data_extract(self):
  60. self.df = self.data.object_df
  61. self.ego_df = self.data.ego_data
  62. active_time_ranges = self.status_trigger_dict['ACC']['ACC_active_time']
  63. self.df_acc = get_status_active_data(active_time_ranges, self.ego_df)
  64. active_time_ranges_ica_cruise = self.status_trigger_dict['ICA']['ICA_cruise_time']
  65. active_time_ranges_ica_follow = self.status_trigger_dict['ICA']['ICA_follow_time']
  66. if not active_time_ranges_ica_cruise and not active_time_ranges_ica_follow:
  67. self.ica_flag = False
  68. else:
  69. self.ica_flag = True
  70. if self.df_acc.empty or self.ica_flag:
  71. self.result['statusFlag']['function_ACC'] = False
  72. else:
  73. self.result['statusFlag']['function_ACC'] = True
  74. def _get_first_change_index_cruise(self):
  75. """
  76. 获取数据集中第一次巡航速度发生变化的索引。
  77. Args:
  78. 无参数。
  79. Returns:
  80. Union[int, None]: 如果存在巡航速度发生变化的索引,则返回第一个发生变化的索引(int类型);
  81. 如果不存在,则返回None。
  82. """
  83. change_indices = self.df_acc[self.df_acc['set_cruise_speed'] != self.df_acc['set_cruise_speed'].shift()].index
  84. if not change_indices.empty:
  85. first_change_index = change_indices.min()
  86. else:
  87. first_change_index = None
  88. return first_change_index
  89. def _find_stable_speed_cruise(self, window_size, percent_deviation, set_value):
  90. """
  91. 在给定的速度数据中查找稳定的巡航速度段,并计算该段的平均速度。
  92. Args:
  93. window_size (int): 滑动窗口的大小,表示用于计算平均速度的速度数据点数量。
  94. percent_deviation (float): 设定值的允许偏差百分比。
  95. set_value (float): 期望的稳定速度设定值。
  96. Returns:
  97. None
  98. """
  99. # speed_data = self.df['v'].values
  100. speed_data = self.df_acc['v'].values # .tolist()
  101. deviation = set_value * (percent_deviation / 100)
  102. stable_start = None
  103. stable_average_speed = None
  104. for i in range(len(speed_data) - window_size + 1):
  105. window_data = speed_data[i:i + window_size]
  106. if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
  107. if stable_start is None:
  108. stable_start = i
  109. stable_end = i + window_size - 1
  110. stable_average_speed = np.mean(window_data)
  111. j = i + window_size
  112. while j < len(speed_data) - window_size + 1:
  113. next_window_data = speed_data[j:j + window_size]
  114. if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
  115. stable_end = j + window_size - 1
  116. stable_average_speed = (stable_average_speed * (j - stable_start) + sum(next_window_data)) / (
  117. j - stable_start + window_size)
  118. j += window_size
  119. else:
  120. stable_start = j + window_size - 1
  121. stable_end = i + window_size - 1
  122. stable_average_speed = np.mean(window_data)
  123. break
  124. # self.stable_start_time_cruise = self.df['simTime'].iloc[stable_start]
  125. self.stable_average_speed = stable_average_speed
  126. print("self.stable_average_speed is", self.stable_average_speed)
  127. def data_analyze(self):
  128. if self.df_acc.empty or self.ica_flag:
  129. self.result['value'] = [0.0]
  130. print("ACC cruise: No ICA status found.")
  131. else:
  132. first_change_index = self._get_first_change_index_cruise()
  133. set_cruise_speed = self.df_acc.loc[first_change_index, 'set_cruise_speed']
  134. self._find_stable_speed_cruise(window_size=4, percent_deviation=5, set_value=set_cruise_speed)
  135. if self.stable_average_speed:
  136. if not first_change_index:
  137. self.overshoot_cruise = 0
  138. else:
  139. initial_speed = self.df.loc[first_change_index, 'v']
  140. print("initial_speed is", initial_speed)
  141. print("self.df['v'].min() is", self.df['v'].min())
  142. if initial_speed > self.stable_average_speed:
  143. self.overshoot_cruise = (self.stable_average_speed - self.df[
  144. 'v'].min()) * 100 / self.stable_average_speed
  145. elif initial_speed < self.stable_average_speed:
  146. self.overshoot_cruise = (self.df[
  147. 'v'].max() - self.stable_average_speed) * 100 / self.stable_average_speed
  148. else:
  149. self.overshoot_cruise = 0
  150. else:
  151. self.overshoot_cruise = Max_Time
  152. self.result['value'] = [round(self.overshoot_cruise, 3)]
  153. print(f"overshoot_cruise: {self.overshoot_cruise}")
  154. def markline_statistic(self):
  155. pass
  156. def report_data_statistic(self):
  157. # time_list = self.ego_df['simTime'].values.tolist()
  158. # graph_list = [x for x in self.graph_list if not np.isnan(x)]
  159. self.result['tableData']['avg'] = self.result['value'][0] if not self.ica_flag and not self.df_acc.empty else '-'
  160. self.result['tableData']['max'] = '-'
  161. self.result['tableData']['min'] = '-'
  162. # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
  163. self.result['reportData']['data'] = []
  164. # self.markline_statistic()
  165. # markline_slices = self.markline_df.to_dict('records')
  166. self.result['reportData']['markLine'] = []
  167. self.result['reportData']['range'] = [0, 1.2]
  168. def run(self):
  169. # logger.info(f"Custom metric run:[{self.result['name']}].")
  170. logger.info(f"[case:{self.case_name}] Custom metric:[overshoot_cruise:{self.result['name']}] evaluate.")
  171. try:
  172. self.data_extract()
  173. except Exception as e:
  174. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  175. try:
  176. self.data_analyze()
  177. except Exception as e:
  178. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  179. try:
  180. self.report_data_statistic()
  181. except Exception as e:
  182. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  183. # if __name__ == "__main__":
  184. # pass