123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: zhanghaiwen, yangzihao
- @Data: 2024/02/21
- @Last Modified: 2024/02/21
- @Summary: The template of custom indicator.
- """
- """
- 设计思路:
- """
- import math
- import pandas as pd
- import numpy as np
- from scipy.spatial.distance import cdist
- from scipy.linalg import norm # 用于计算向量范数
- from common import zip_time_pairs, continuous_group, get_status_active_data, _cal_THW, _cal_v_ego_projection
- from log import logger
- """import functions"""
- # custom metric codes
- class CustomMetric(object):
- def __init__(self, all_data, case_name):
- self.data = all_data
- self.optimal_dict = self.data.config
- self.status_trigger_dict = self.data.status_trigger_dict
- self.case_name = case_name
- self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
- self.graph_list = []
- self.THW = pd.DataFrame()
- self.df = pd.DataFrame()
- self.ego_df = pd.DataFrame()
- self.df_acc = pd.DataFrame()
- self.ica_flag = False
- self.stable_average_THW = None
- self.overshoot_THW = None
- self.result = {
- "name": "跟车超调量",
- "value": [],
- # "weight": [],
- "tableData": {
- "avg": "", # 平均值,或指标值
- "max": "",
- "min": ""
- },
- "reportData": {
- "name": "跟车超调量(%)",
- # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
- "data": [],
- "markLine": [],
- "range": [],
- },
- "statusFlag": {}
- }
- self.run()
- print(f"跟车超调量: {self.result['value']}")
- def data_extract(self):
- self.df = self.data.object_df
- self.ego_df = self.data.ego_data
- active_time_ranges = self.status_trigger_dict['ACC']['ACC_active_time']
- self.df_acc = get_status_active_data(active_time_ranges, self.df)
- active_time_ranges_ica_cruise = self.status_trigger_dict['ICA']['ICA_cruise_time']
- active_time_ranges_ica_follow = self.status_trigger_dict['ICA']['ICA_follow_time']
- if not active_time_ranges_ica_cruise and not active_time_ranges_ica_follow:
- self.ica_flag = False
- else:
- self.ica_flag = True
- if self.df_acc.empty or self.ica_flag:
- self.result['statusFlag']['function_ACC'] = False
- else:
- self.result['statusFlag']['function_ACC'] = True
- def _find_stable_THW(self, window_size, percent_deviation, set_value, distance):
- """
- 在给定的数据窗口中查找稳定跟车时距离THW,并计算该段内THW的平均值。
- Args:
- window_size (int): 窗口大小,表示在数据中寻找稳定段时考虑的连续数据点数量。
- percent_deviation (float): THW值相对于设定值的允许偏差百分比。
- set_value (float): THW的设定值。
- Returns:
- None
- """
-
- # # 提取THW数组
- # # 创建一个空的DataFrame来存储结果
- thw_results = pd.DataFrame(columns=['simTime', 'playerId', 'THW'])
-
- # 按时间戳分组
- grouped = self.df_acc.groupby('simTime')
-
- # 遍历每个时间戳分组
- for sim_time, group in grouped:
- # 分离出自车和其他车辆
- ego_vehicle = group[group['playerId'] == 1]
- other_vehicles = group[group['playerId'] != 1]
-
- if not ego_vehicle.empty and not other_vehicles.empty:
- # 计算位置矩阵
- ego_positions = ego_vehicle[['posX', 'posY']].values
- other_positions = other_vehicles[['posX', 'posY']].values
-
- # 计算距离矩阵
- distance_matrix = cdist(ego_positions, other_positions, 'euclidean')
-
- # 假设自车只有一行数据(即只有一个自车实例),因此我们可以直接取第一个元素
- ego_row = ego_vehicle.iloc[0]
- # 找出最小距离及其索引
- min_distance = np.min(distance_matrix)
- min_distance_idx = np.unravel_index(np.argmin(distance_matrix), distance_matrix.shape)
-
- # 获取最接近的车辆行
- other_row = other_vehicles.iloc[min_distance_idx[1]]
- # 获取最接近的车辆行
- other_row = other_vehicles.iloc[min_distance_idx[1]]
-
- # 计算相对位置向量
- relative_position_vector = other_row[['posX', 'posY']].values - ego_row[['posX', 'posY']].values
-
- # 计算自车方向向量(这里假设自车速度不为零,且方向是有效的)
- ego_direction_vector = ego_row[['speedX', 'speedY']].values
- ego_direction_vector_norm = norm(ego_direction_vector)
- if ego_direction_vector_norm > 0:
- ego_direction_vector = ego_direction_vector / ego_direction_vector_norm # 归一化方向向量
- else:
- # 如果速度为零,则设置一个默认方向(例如,前方)
- ego_direction_vector = np.array([1, 0])
-
- # 计算相对速度向量
-
- # ego_speed = norm(ego_row[['speedX', 'speedY']].values)
- ego_speed = ego_direction_vector_norm / 3.6
- # 判断前车是否在自车的前方(基于相对位置向量和自车方向向量的点积)
- is_ahead = np.dot(relative_position_vector, ego_direction_vector) > 0
-
- # 如果前车在自车的前方且相对速度大于0(且距离在合理范围内),则计算THW
- if is_ahead and min_distance < distance:
- thw = min_distance / ego_speed
- thw_results = pd.concat([thw_results, pd.DataFrame([{
- 'simTime': sim_time,
- 'playerId': ego_row['playerId'],
- 'THW': thw
- }])], ignore_index=True)
- else:
- # 如果条件不满足,可以添加一个表示“无法计算”的条目,或者忽略
-
- thw = float('inf')
- THW = thw_results['THW'].values
- self.THW = thw_results
- deviation = set_value * (percent_deviation / 100)
- stable_start = None
- stable_end = None
- stable_average_THW = None
-
-
- for i in range(len(THW) - window_size + 1):
- window_data = THW[i:i + window_size]
- if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
- if stable_start is None:
- stable_start = i
- stable_end = i + window_size - 1
- stable_average_THW = np.mean(window_data)
- j = i + window_size
- while j < len(THW) - window_size + 1:
- next_window_data = THW[j:j + window_size]
- if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
- stable_end = j + window_size - 1
- stable_average_THW = (stable_average_THW * (j - stable_start) + sum(next_window_data)) / (
- j - stable_start + window_size)
- j += window_size
- else:
- stable_start = j + window_size - 1
- stable_end = i + window_size - 1
- stable_average_THW = np.mean(window_data)
- break
-
- self.stable_average_THW = stable_average_THW
- def _get_first_change_index_THW(self):
- """
- 获取DataFrame中'set_headway_time'列首次发生变化的索引值。
- Args:
- 无参数。
- Returns:
- Union[int, None]: 如果存在变化,则返回首次发生变化的索引值(int类型),否则返回None。
- """
- change_indices = self.df_acc[self.df_acc['set_headway_time'] != self.df_acc['set_headway_time'].shift()].index
- if not change_indices.empty:
- # 使用首次变化的索引来获取对应的'simTime'值
- first_change_index = change_indices.min()
- first_change_simTime = self.df_acc.loc[first_change_index, 'simTime']
- else:
- first_change_simTime = None
-
- return first_change_simTime
- def data_analyze(self):
- if self.df_acc.empty or self.ica_flag:
- self.result['value'] = [0.0]
- print(f"ACC THW overshoot_THW: 0")
- else:
-
- set_headway_time = self.df_acc['set_headway_time'].iloc[0]
-
- distance = 80.0
- self._find_stable_THW(10, 5, set_headway_time, distance)
- if set_headway_time <= 0:
- self.overshoot_THW = 0
- else:
- if not self.THW.empty:
- if self.stable_average_THW:
- initial_THW = self.THW['THW'].iloc[0]
- if initial_THW > self.stable_average_THW:
- self.overshoot_THW = (self.stable_average_THW - self.THW['THW'].min()) * 100 / self.stable_average_THW
- elif initial_THW < self.stable_average_THW:
- self.overshoot_THW = (self.THW['THW'].max() - self.stable_average_THW) * 100 / self.stable_average_THW
- else:
- self.overshoot_THW = 100
- print("ACC THW overshoot_THW: self.stable_average_THW is None")
- else:
- self.overshoot_THW = 0.0
- self.result['value'] = [round(self.overshoot_THW, 3)]
- print(f"ACC THW overshoot_THW: {self.overshoot_THW}")
- def markline_statistic(self):
- pass
- def report_data_statistic(self):
- # time_list = self.ego_df['simTime'].values.tolist()
- # graph_list = [x for x in self.graph_list if not np.isnan(x)]
- self.result['tableData']['avg'] = self.result['value'][0] if not self.ica_flag and not self.df_acc.empty else '-'
- self.result['tableData']['max'] = '-'
- self.result['tableData']['min'] = '-'
- # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
- self.result['reportData']['data'] = []
- # self.markline_statistic()
- # markline_slices = self.markline_df.to_dict('records')
- self.result['reportData']['markLine'] = []
- self.result['reportData']['range'] = [0, 1.2]
- def run(self):
- # logger.info(f"Custom metric run:[{self.result['name']}].")
- logger.info(f"[case:{self.case_name}] Custom metric:[overshoot_THW:{self.result['name']}] evaluate.")
- try:
- self.data_extract()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
- try:
- self.data_analyze()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
- try:
- self.report_data_statistic()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
- # if __name__ == "__main__":
- # pass
|