cicv_acc_09_overshoot_THW_new.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2023 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen, yangzihao
  10. @Data: 2024/02/21
  11. @Last Modified: 2024/02/21
  12. @Summary: The template of custom indicator.
  13. """
  14. """
  15. 设计思路:
  16. """
  17. import math
  18. import pandas as pd
  19. import numpy as np
  20. from scipy.spatial.distance import cdist
  21. from scipy.linalg import norm # 用于计算向量范数
  22. from common import zip_time_pairs, continuous_group, get_status_active_data, _cal_THW, _cal_v_ego_projection
  23. from log import logger
  24. """import functions"""
  25. # custom metric codes
  26. class CustomMetric(object):
  27. def __init__(self, all_data, case_name):
  28. self.data = all_data
  29. self.optimal_dict = self.data.config
  30. self.status_trigger_dict = self.data.status_trigger_dict
  31. self.case_name = case_name
  32. self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  33. self.graph_list = []
  34. self.THW = pd.DataFrame()
  35. self.df = pd.DataFrame()
  36. self.ego_df = pd.DataFrame()
  37. self.df_acc = pd.DataFrame()
  38. self.ica_flag = False
  39. self.stable_average_THW = None
  40. self.overshoot_THW = None
  41. self.result = {
  42. "name": "跟车超调量",
  43. "value": [],
  44. # "weight": [],
  45. "tableData": {
  46. "avg": "", # 平均值,或指标值
  47. "max": "",
  48. "min": ""
  49. },
  50. "reportData": {
  51. "name": "跟车超调量(%)",
  52. # "legend": [], # 如果有多个data,则需要增加data对应的说明,如:["横向加速度", "纵向加速度"]
  53. "data": [],
  54. "markLine": [],
  55. "range": [],
  56. },
  57. "statusFlag": {}
  58. }
  59. self.run()
  60. print(f"跟车超调量: {self.result['value']}")
  61. def data_extract(self):
  62. self.df = self.data.object_df
  63. self.ego_df = self.data.ego_data
  64. active_time_ranges = self.status_trigger_dict['ACC']['ACC_active_time']
  65. self.df_acc = get_status_active_data(active_time_ranges, self.df)
  66. active_time_ranges_ica_cruise = self.status_trigger_dict['ICA']['ICA_cruise_time']
  67. active_time_ranges_ica_follow = self.status_trigger_dict['ICA']['ICA_follow_time']
  68. if not active_time_ranges_ica_cruise and not active_time_ranges_ica_follow:
  69. self.ica_flag = False
  70. else:
  71. self.ica_flag = True
  72. if self.df_acc.empty or self.ica_flag:
  73. self.result['statusFlag']['function_ACC'] = False
  74. else:
  75. self.result['statusFlag']['function_ACC'] = True
  76. def _find_stable_THW(self, window_size, percent_deviation, set_value, distance):
  77. """
  78. 在给定的数据窗口中查找稳定跟车时距离THW,并计算该段内THW的平均值。
  79. Args:
  80. window_size (int): 窗口大小,表示在数据中寻找稳定段时考虑的连续数据点数量。
  81. percent_deviation (float): THW值相对于设定值的允许偏差百分比。
  82. set_value (float): THW的设定值。
  83. Returns:
  84. None
  85. """
  86. # # 提取THW数组
  87. # # 创建一个空的DataFrame来存储结果
  88. thw_results = pd.DataFrame(columns=['simTime', 'playerId', 'THW'])
  89. # 按时间戳分组
  90. grouped = self.df_acc.groupby('simTime')
  91. # 遍历每个时间戳分组
  92. for sim_time, group in grouped:
  93. # 分离出自车和其他车辆
  94. ego_vehicle = group[group['playerId'] == 1]
  95. other_vehicles = group[group['playerId'] != 1]
  96. if not ego_vehicle.empty and not other_vehicles.empty:
  97. # 计算位置矩阵
  98. ego_positions = ego_vehicle[['posX', 'posY']].values
  99. other_positions = other_vehicles[['posX', 'posY']].values
  100. # 计算距离矩阵
  101. distance_matrix = cdist(ego_positions, other_positions, 'euclidean')
  102. # 假设自车只有一行数据(即只有一个自车实例),因此我们可以直接取第一个元素
  103. ego_row = ego_vehicle.iloc[0]
  104. # 找出最小距离及其索引
  105. min_distance = np.min(distance_matrix)
  106. min_distance_idx = np.unravel_index(np.argmin(distance_matrix), distance_matrix.shape)
  107. # 获取最接近的车辆行
  108. other_row = other_vehicles.iloc[min_distance_idx[1]]
  109. # 获取最接近的车辆行
  110. other_row = other_vehicles.iloc[min_distance_idx[1]]
  111. # 计算相对位置向量
  112. relative_position_vector = other_row[['posX', 'posY']].values - ego_row[['posX', 'posY']].values
  113. # 计算自车方向向量(这里假设自车速度不为零,且方向是有效的)
  114. ego_direction_vector = ego_row[['speedX', 'speedY']].values
  115. ego_direction_vector_norm = norm(ego_direction_vector)
  116. if ego_direction_vector_norm > 0:
  117. ego_direction_vector = ego_direction_vector / ego_direction_vector_norm # 归一化方向向量
  118. else:
  119. # 如果速度为零,则设置一个默认方向(例如,前方)
  120. ego_direction_vector = np.array([1, 0])
  121. # 计算相对速度向量
  122. # ego_speed = norm(ego_row[['speedX', 'speedY']].values)
  123. ego_speed = ego_direction_vector_norm / 3.6
  124. # 判断前车是否在自车的前方(基于相对位置向量和自车方向向量的点积)
  125. is_ahead = np.dot(relative_position_vector, ego_direction_vector) > 0
  126. # 如果前车在自车的前方且相对速度大于0(且距离在合理范围内),则计算THW
  127. if is_ahead and min_distance < distance:
  128. thw = min_distance / ego_speed
  129. thw_results = pd.concat([thw_results, pd.DataFrame([{
  130. 'simTime': sim_time,
  131. 'playerId': ego_row['playerId'],
  132. 'THW': thw
  133. }])], ignore_index=True)
  134. else:
  135. # 如果条件不满足,可以添加一个表示“无法计算”的条目,或者忽略
  136. thw = float('inf')
  137. THW = thw_results['THW'].values
  138. self.THW = thw_results
  139. deviation = set_value * (percent_deviation / 100)
  140. stable_start = None
  141. stable_end = None
  142. stable_average_THW = None
  143. for i in range(len(THW) - window_size + 1):
  144. window_data = THW[i:i + window_size]
  145. if all(set_value - deviation <= s <= set_value + deviation for s in window_data):
  146. if stable_start is None:
  147. stable_start = i
  148. stable_end = i + window_size - 1
  149. stable_average_THW = np.mean(window_data)
  150. j = i + window_size
  151. while j < len(THW) - window_size + 1:
  152. next_window_data = THW[j:j + window_size]
  153. if all(set_value - deviation <= s <= set_value + deviation for s in next_window_data):
  154. stable_end = j + window_size - 1
  155. stable_average_THW = (stable_average_THW * (j - stable_start) + sum(next_window_data)) / (
  156. j - stable_start + window_size)
  157. j += window_size
  158. else:
  159. stable_start = j + window_size - 1
  160. stable_end = i + window_size - 1
  161. stable_average_THW = np.mean(window_data)
  162. break
  163. self.stable_average_THW = stable_average_THW
  164. def _get_first_change_index_THW(self):
  165. """
  166. 获取DataFrame中'set_headway_time'列首次发生变化的索引值。
  167. Args:
  168. 无参数。
  169. Returns:
  170. Union[int, None]: 如果存在变化,则返回首次发生变化的索引值(int类型),否则返回None。
  171. """
  172. change_indices = self.df_acc[self.df_acc['set_headway_time'] != self.df_acc['set_headway_time'].shift()].index
  173. if not change_indices.empty:
  174. # 使用首次变化的索引来获取对应的'simTime'值
  175. first_change_index = change_indices.min()
  176. first_change_simTime = self.df_acc.loc[first_change_index, 'simTime']
  177. else:
  178. first_change_simTime = None
  179. return first_change_simTime
  180. def data_analyze(self):
  181. if self.df_acc.empty or self.ica_flag:
  182. self.result['value'] = [0.0]
  183. print(f"ACC THW overshoot_THW: 0")
  184. else:
  185. set_headway_time = self.df_acc['set_headway_time'].iloc[0]
  186. distance = 80.0
  187. self._find_stable_THW(10, 5, set_headway_time, distance)
  188. if set_headway_time <= 0:
  189. self.overshoot_THW = 0
  190. else:
  191. if not self.THW.empty:
  192. if self.stable_average_THW:
  193. initial_THW = self.THW['THW'].iloc[0]
  194. if initial_THW > self.stable_average_THW:
  195. self.overshoot_THW = (self.stable_average_THW - self.THW['THW'].min()) * 100 / self.stable_average_THW
  196. elif initial_THW < self.stable_average_THW:
  197. self.overshoot_THW = (self.THW['THW'].max() - self.stable_average_THW) * 100 / self.stable_average_THW
  198. else:
  199. self.overshoot_THW = 100
  200. print("ACC THW overshoot_THW: self.stable_average_THW is None")
  201. else:
  202. self.overshoot_THW = 0.0
  203. self.result['value'] = [round(self.overshoot_THW, 3)]
  204. print(f"ACC THW overshoot_THW: {self.overshoot_THW}")
  205. def markline_statistic(self):
  206. pass
  207. def report_data_statistic(self):
  208. # time_list = self.ego_df['simTime'].values.tolist()
  209. # graph_list = [x for x in self.graph_list if not np.isnan(x)]
  210. self.result['tableData']['avg'] = self.result['value'][0] if not self.ica_flag and not self.df_acc.empty else '-'
  211. self.result['tableData']['max'] = '-'
  212. self.result['tableData']['min'] = '-'
  213. # zip_vs_time = zip_time_pairs(time_list, self.graph_list)
  214. self.result['reportData']['data'] = []
  215. # self.markline_statistic()
  216. # markline_slices = self.markline_df.to_dict('records')
  217. self.result['reportData']['markLine'] = []
  218. self.result['reportData']['range'] = [0, 1.2]
  219. def run(self):
  220. # logger.info(f"Custom metric run:[{self.result['name']}].")
  221. logger.info(f"[case:{self.case_name}] Custom metric:[overshoot_THW:{self.result['name']}] evaluate.")
  222. try:
  223. self.data_extract()
  224. except Exception as e:
  225. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
  226. try:
  227. self.data_analyze()
  228. except Exception as e:
  229. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
  230. try:
  231. self.report_data_statistic()
  232. except Exception as e:
  233. logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
  234. # if __name__ == "__main__":
  235. # pass