123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- """
- @Authors: yangzihao(yangzihao@china-icv.cn)
- @Data: 2024/02/21
- @Last Modified: 2024/02/21
- @Summary: The template of custom indicator.
- """
- import pandas as pd
- import numpy as np
- import scipy.signal as sg
- from common import zip_time_pairs, continuous_group, continous_judge
- from log import logger
- """import functions"""
- class CustomMetric(object):
- def __init__(self, all_data, case_name):
- self.data = all_data
- self.case_name = case_name
- self.markline_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
- self.result = {
- "name": "ica车道中心线横向距离极大值",
- "value": [],
-
- "tableData": {
- "avg": "",
- "max": "",
- "min": ""
- },
- "reportData": {
- "name": "车辆中心线横向距离(m)",
-
- "data": [],
- "markLine": [],
- "range": [],
- },
- "statusFlag": {}
- }
- self.ego_df = pd.DataFrame()
- self.df_lka = pd.DataFrame()
- self.center_dist_with_nan = list()
- self.center_time_list = list()
- self.center_frame_list = list()
- self.center_dist = list()
- self.run()
- def data_extract(self):
- self.ego_df = self.data.ego_data
- self.df_lka = self.ego_df[self.ego_df['ICA_status'].isin(
- ["Only_Longitudinal_Control", "LLC_Follow_Line", "LLC_Follow_Vehicle"])].copy()
- if self.df_lka.empty:
- self.result['statusFlag']['functionICA'] = False
- else:
- self.result['statusFlag']['functionICA'] = True
-
-
-
-
- def data_analyze(self):
- df_lka = self.df_lka
- self.center_dist_with_nan = df_lka['laneOffset'].to_list()
- self.center_time_list = df_lka['simTime'].to_list()
- self.center_frame_list = df_lka['simFrame'].to_list()
- self.center_dist = [x for x in self.center_dist_with_nan if not np.isnan(x)]
- if not self.center_dist:
- self.result['value'].append(0)
- else:
- center_dist = [abs(x) for x in self.center_dist]
-
- center_dist = np.array(center_dist)
- extreme_max_value = center_dist.max()
- self.result['value'].append(round(extreme_max_value, 2))
- def markline_statistic(self):
- unfunc_df = pd.DataFrame(
- {'simTime': self.center_time_list, 'simFrame': self.center_frame_list,
- 'center_dist': self.center_dist_with_nan})
- unfunc_df = unfunc_df[unfunc_df['simFrame'] > 1]
- unfunc_df = unfunc_df.dropna(subset=['center_dist'])
- lane_df = unfunc_df[abs(unfunc_df['center_dist']) > 1.5]
- lane_df = lane_df[['simTime', 'simFrame', 'center_dist']]
- dist_lane_df = continuous_group(lane_df)
- dist_lane_df['type'] = "ICA"
- self.markline_df = pd.concat([self.markline_df, dist_lane_df], ignore_index=True)
- def report_data_statistic(self):
- time_list = self.df_lka['simTime'].values.tolist()
- line_dist_list = self.center_dist_with_nan
- self.result['tableData']['avg'] = '-'
- self.result['tableData']['max'] = self.result['value'][0] if not self.df_lka.empty else '-'
- self.result['tableData']['min'] = '-'
- zip_vs_time = zip_time_pairs(time_list, line_dist_list)
- self.result['reportData']['data'] = zip_vs_time
- self.markline_statistic()
- markline_slices = self.markline_df.to_dict('records')
- self.result['reportData']['markLine'] = markline_slices
- self.result['reportData']['range'] = f"[0, 1.5]"
- def run(self):
-
- logger.info(f"[case:{self.case_name}] Custom metric:[center_distance_max:{self.result['name']}] evaluate.")
- try:
- self.data_extract()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data extract ERROR!", e)
- try:
- self.data_analyze()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} data analyze ERROR!", e)
- try:
- self.report_data_statistic()
- except Exception as e:
- logger.error(f"[case:{self.case_name}] Custom metric:{self.result['name']} report data statistic ERROR!", e)
|