123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: zhanghaiwen(zhanghaiwen@china-icv.cn), yangzihao(yangzihao@china-icv.cn)
- @Data: 2024/01/12
- @Last Modified: 2024/01/12
- @Summary: Weight cal
- """
- import sys
- sys.path.append('../common')
- sys.path.append('modules')
- sys.path.append('score')
- import numpy as np
- from common import get_interpolation
- from functools import reduce
- def cal_weight_from_80_old(score_list):
- # weight process
- s_list = [80.1 if x == 80 else x for x in score_list]
- weight_list = abs((np.array(s_list) - 80) / 100)
- # normalization
- weight_list = weight_list / sum(weight_list)
- return weight_list
- def cal_weight_from_80(score_list):
- # weight process
- s_list = [80.1 if x == 80 else x for x in score_list]
- weight_list = abs((np.array(s_list) - 80) / 100)
- # normalization
- weight_list = weight_list / sum(weight_list)
- # Round to 5 decimal places, but keep a copy of the original normalized values
- rounded_list = np.round(weight_list, 4).tolist()
- # Calculate the difference between the rounded sum and 1
- diff = 1 - sum(rounded_list)
- # If the difference is not zero, adjust the last element to make the sum exactly 1
- if diff != 0:
- rounded_list[-1] += diff
- rounded_list[-1] = round(rounded_list[-1], 4)
- return rounded_list
- def cal_score_with_priority(score_list, weight_list, priority_list):
- """
- """
- rho = 1
- flag = any(i < 80 for i in score_list)
- if flag:
- rho = 0.9
- for i in range(len(score_list)):
- if score_list[i] < 80 and priority_list[i] == 0:
- rho = 0.8
- # calculate score
- score_all = np.dot(weight_list, score_list) * rho
- return score_all
- def cal_score_from_80(score_list):
- """
- """
- # weight process
- weight_list = cal_weight_from_80(score_list)
- # calculate score
- score_all = np.dot(weight_list, score_list)
- # score_all = score_all * 0.8 if flag else score_all
- return round(score_all, 2)
- class ScoreModel(object):
- """
- 信息量越大,权重越大
- 对比强度和冲突性越大,信息量越大
- 标准差越大,对比强度越大
- 相关性越小,冲突性越大
- ————————————————————————
- 单列标准差大,列之间相关性小 -> 则权重大
- """
- def __init__(self, kind_list, optimal_value, multiple_list, arr):
- # n for cases
- # m for indicators
- self.n, self.m = arr.shape
- self.kind = kind_list
- self.optimal = optimal_value
- self.X = arr
- self.rho = 1 / 3 # 一般选0.5,最低分计算公式: rho/(1+rho)
- self.multiple = np.array(multiple_list)
- def calculate_score(self):
- """
- 灰色关联理论
- :return:
- """
- # m个指标,n个场景
- val_mean = []
- optimal_value = self.optimal
- for i in range(self.m):
- opt_val = optimal_value[i]
- val_mean_i = (sum(self.X[:, i]) + opt_val) / (self.n + 1) # Eq(15)
- val_mean.append(val_mean_i)
- self.X = self.X / np.array(val_mean) # 无量纲化
- optimal_value = np.array(optimal_value) / np.array(val_mean) # 最优值无量纲化
- abs_X = abs(optimal_value - self.X)
- minn = 0
- maxx = 2 * (self.multiple[0][1] - 1) / (self.multiple[0][1] + 1) # 五倍时参数为1.333333,三倍时参数为1
- eta = (minn + self.rho * maxx) / (abs_X + self.rho * maxx) # Eq(16)
- Eta = [x * 80 for x in list(np.mean(eta, axis=0))]
- return Eta
- def cal_score(self):
- """
- 数据处理前进行特判,先将无需打分的数据直接给分
- 例如,大于基准值五倍的值,直接给出100分、0分
- 单列均为同一个值时,符合预期值则100分,否则0分
- 先完成单用例特判,再考虑多用例特判
- """
- # 单用例版本
- # for j in range(self.n):
- # multiple = 5
- inteval_20_coefficient = 3
- flag_list = [-1] * self.m
- column_list = []
- for i in range(self.m):
- optimal = self.optimal[i]
- multiple = self.multiple[i]
- if self.kind[i] == 1: # 极大型
- if np.all(self.X[:, i] >= optimal * multiple[1]): # 补充线性插值
- flag_list[i] = 100
- elif np.all(self.X[:, i] >= optimal):
- flag_list[i] = float(get_interpolation(self.X[:, i], [optimal, 80], [optimal * multiple[1], 100]))
- elif self.X[:, i] <= optimal * multiple[0]:
- flag_list[i] = 0
- else:
- column_list.append(i)
- elif self.kind[i] == -1: # 极小型
- if np.all(self.X[:, i] <= optimal * multiple[0]):
- flag_list[i] = 100
- elif np.all(self.X[:, i] <= optimal):
- flag_list[i] = float(get_interpolation(self.X[:, i], [optimal, 80], [optimal * multiple[0], 100]))
- elif self.X[:, i] >= optimal * multiple[1]:
- flag_list[i] = 0
- else:
- column_list.append(i)
- elif self.kind[i] == 0: # 区间型
- if np.all(optimal * multiple[0] <= self.X[:, i] <= optimal):
- flag_list[i] = float(
- get_interpolation(optimal - self.X[:, i], [abs(optimal - optimal * multiple[0]), 80], [0, 100]))
- elif np.all(optimal <= self.X[:, i] <= optimal * multiple[1]):
- flag_list[i] = float(
- get_interpolation(self.X[:, i] - optimal, [abs(optimal * multiple[1] - optimal), 80], [0, 100]))
- elif np.all(self.X[:, i] < optimal * multiple[0]):
- dist = optimal * multiple[0] - self.X[:, i]
- interval_dist = (optimal - optimal * multiple[0]) / inteval_20_coefficient
- if dist < interval_dist:
- flag_list[i] = float(get_interpolation(dist, [interval_dist, 20], [0, 80]))
- else:
- flag_list[i] = 0
- elif np.all(optimal * multiple[1] < self.X[:, i]):
- dist = self.X[:, i] - optimal * multiple[1]
- interval_dist = (optimal * multiple[1] - optimal) / inteval_20_coefficient
- if dist < interval_dist:
- flag_list[i] = float(get_interpolation(dist, [interval_dist, 20], [0, 80]))
- else:
- flag_list[i] = 0
- else:
- column_list.append(i)
- arr_temp = self.X[:, column_list]
- kind_temp = [self.kind[i] for i in range(len(flag_list)) if flag_list[i] == -1]
- optimal_temp = [self.optimal[i] for i in range(len(flag_list)) if flag_list[i] == -1]
- multiple_temp = [self.multiple[i] for i in range(len(flag_list)) if flag_list[i] == -1]
- # n_temp = len(arr_temp)
- m_temp = len(arr_temp[0])
- critic_m = ScoreModel(kind_temp, optimal_temp, multiple_temp, arr_temp)
- if -1 not in flag_list: # 全为特殊值
- score = sum(flag_list) / len(flag_list)
- elif all(x == -1 for x in flag_list): # 无特殊值
- score_temp = critic_m.calculate_score()
- # score = sum(score_temp) / len(score_temp)
- flag_list = score_temp
- else: # 部分为特殊值
- score_temp = critic_m.calculate_score()
- # score_temp_mean = sum(score_temp) / len(score_temp)
- # w_temp = m_temp / self.m
- # score = 100 * (1 - w_temp) + score_temp_mean * w_temp
- index = 0
- for i, flag in enumerate(flag_list):
- if flag == -1:
- flag_list[i] = score_temp[index]
- index += 1
- score_temp = flag_list
- return score_temp
- class AHP:
- def __init__(self, matrix):
- self.A = np.array(matrix)
- self.n = len(matrix)
- def _get_consistency_ratio(self, w_max):
- RI = [0, 0, 0.0001, 0.52, 0.89, 1.12, 1.26, 1.36,
- 1.41, 1.46, 1.49, 1.52, 1.54, 1.56, 1.58, 1.59,
- 1.5943, 1.6064, 1.6133, 1.6207, 1.6292]
- CI = (w_max - self.n) / (self.n - 1)
- CR = CI / RI[self.n]
- return CR
- def get_weights(self, method='eigenvalue'):
- # Check consistency of pairwise comparison matrix
- w, v = np.linalg.eig(self.A)
- w_index = np.argmax(w)
- w_max = np.real(w[w_index])
- cr = self._get_consistency_ratio(w_max)
- if cr > 0.1:
- raise ValueError('The pairwise comparison matrix is inconsistent.')
- # Normalize matrix
- line_sum = [sum(m) for m in zip(*self.A)]
- D = np.zeros((self.n, self.n))
- for i in range(self.n):
- for j in range(self.n):
- D[i][j] = self.A[i][j] / line_sum[j]
- # Calculate weights with selected method
- if method == 'arithmetic':
- weights = np.zeros(self.n)
- for i in range(self.n):
- weights[i] = np.average(D[i])
- elif method == 'geometric':
- weights = np.zeros(self.n)
- for i in range(self.n):
- weights[i] = reduce(lambda x, y: x * y, self.A[i])
- weights[i] = pow(weights[i], 1 / self.n)
- weights = [e / np.sum(weights) for e in weights]
- elif method == 'eigenvalue':
- weights = np.zeros(self.n)
- v_index = np.argmax(v)
- v_max = np.real(v[:, v_index])
- weights = [e / np.sum(v_max) for e in v_max]
- return weights
- if __name__ == "__main__":
- kind_list = [-1]
- optimal_value = [6]
- multiple_list = [[0.5, 2]] # [3, 12]
- arr = [[1.999]]
- # arr = [[2.1]]
- # arr = [[2.999]]
- # arr = [[3]]
- # arr = [[4]]
- # arr = [[6]]
- # arr = [[11]]
- # arr = [[11.999]]
- # arr = [[12]]
- # arr = [[12.1]]
- cc = ScoreModel(kind_list, optimal_value, multiple_list, np.array(arr))
- res = cc.cal_score()
- print(res)
|