#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################## # # Copyright (c) 2023 CICV, Inc. All Rights Reserved # ################################################################## """ @Authors: zhanghaiwen(zhanghaiwen@china-icv.cn), yangzihao(yangzihao@china-icv.cn) @Data: 2023/06/25 @Last Modified: 2023/06/25 @Summary: Comfort metrics """ import os import sys import math import pandas as pd import numpy as np import scipy.signal sys.path.append('../common') sys.path.append('../modules') sys.path.append('../results') from data_info import DataInfoList from score_weight import cal_score_with_priority, cal_weight_from_80 from common import get_interpolation, score_grade, string_concatenate, replace_key_with_value, get_frame_with_time import matplotlib.pyplot as plt def peak_valley_decorator(method): def wrapper(self, *args, **kwargs): peak_valley = self._peak_valley_determination(self.df) pv_list = self.df.loc[peak_valley, ['simTime', 'speedH']].values.tolist() if len(pv_list) != 0: flag = True p_last = pv_list[0] for i in range(1, len(pv_list)): p_curr = pv_list[i] if self._peak_valley_judgment(p_last, p_curr): # method(self, p_curr, p_last) method(self, p_curr, p_last, flag, *args, **kwargs) else: p_last = p_curr return method else: flag = False p_curr = [0, 0] p_last = [0, 0] method(self, p_curr, p_last, flag, *args, **kwargs) return method return wrapper class Comfort(object): """ Class for achieving comfort metrics for autonomous driving. Attributes: dataframe: Vehicle driving data, stored in dataframe format. """ def __init__(self, data_processed, custom_data, scoreModel, casePath): self.eval_data = pd.DataFrame() self.data_processed = data_processed self.scoreModel = scoreModel self.casePath = casePath self.data = data_processed.obj_data[1] self.mileage = data_processed.report_info['mileage'] self.ego_df = pd.DataFrame() self.discomfort_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type']) # self.df_drivectrl = data_processed.driver_ctrl_df self.config = data_processed.config comfort_config = data_processed.comfort_config self.comfort_config = comfort_config # common data self.bulitin_metric_list = self.config.builtinMetricList # dimension data self.weight_custom = comfort_config['weightCustom'] self.metric_list = comfort_config['metric'] self.type_list = comfort_config['type'] self.type_name_dict = comfort_config['typeName'] self.name_dict = comfort_config['name'] self.unit_dict = comfort_config['unit'] # custom metric data self.customMetricParam = comfort_config['customMetricParam'] self.custom_metric_list = list(self.customMetricParam.keys()) self.custom_data = custom_data self.custom_param_dict = {} # score data self.weight = comfort_config['weightDimension'] self.weight_type_dict = comfort_config['typeWeight'] self.weight_type_list = comfort_config['typeWeightList'] self.weight_dict = comfort_config['weight'] self.weight_list = comfort_config['weightList'] self.priority_dict = comfort_config['priority'] self.priority_list = comfort_config['priorityList'] self.kind_dict = comfort_config['kind'] self.optimal_dict = comfort_config['optimal'] self.optimal1_dict = self.optimal_dict[0] self.optimal2_dict = self.optimal_dict[1] self.optimal3_dict = self.optimal_dict[2] self.multiple_dict = comfort_config['multiple'] self.kind_list = comfort_config['kindList'] self.optimal_list = comfort_config['optimalList'] self.multiple_list = comfort_config['multipleList'] # metric data self.metric_dict = comfort_config['typeMetricDict'] self.lat_metric_list = self.metric_dict['comfortLat'] self.lon_metric_list = self.metric_dict['comfortLon'] # self.lat_metric_list = ["zigzag", "shake"] # self.lon_metric_list = ["cadence", "slamBrake", "slamAccelerate"] self.time_list = data_processed.driver_ctrl_data['time_list'] self.frame_list = data_processed.driver_ctrl_data['frame_list'] self.linear_accel_dict = dict() self.angular_accel_dict = dict() self.count_dict = {} self.duration_dict = {} self.strength_dict = {} self.discomfort_count = 0 self.zigzag_count = 0 self.shake_count = 0 self.cadence_count = 0 self.slam_brake_count = 0 self.slam_accel_count = 0 self.zigzag_strength = 0 self.shake_strength = 0 self.cadence_strength = 0 self.slam_brake_strength = 0 self.slam_accel_strength = 0 self.discomfort_duration = 0 self.zigzag_duration = 0 self.shake_duration = 0 self.cadence_duration = 0 self.slam_brake_duration = 0 self.slam_accel_duration = 0 self.zigzag_time_list = [] self.zigzag_frame_list = [] self.zigzag_stre_list = [] self.cur_ego_path_list = [] self.curvature_list = [] self._get_data() self._comf_param_cal() def _get_data(self): """ """ comfort_info_list = DataInfoList.COMFORT_INFO self.ego_df = self.data[comfort_info_list].copy() # self.df = self.ego_df.set_index('simFrame') # 索引是csv原索引 self.df = self.ego_df.reset_index(drop=True) # 索引是csv原索引 def _cal_cur_ego_path(self, row): try: divide = (row['speedX'] ** 2 + row['speedY'] ** 2) ** (3 / 2) if not divide: res = None else: res = (row['speedX'] * row['accelY'] - row['speedY'] * row['accelX']) / divide except: res = None return res def _cal_max_min_avg(self, num_list): maxx = max(num_list) if num_list else "-" minn = min(num_list) if num_list else "-" avg = sum(num_list) / len(num_list) if num_list else "-" result = { "max": maxx, "min": minn, "avg": avg } return result def _comf_param_cal(self): """ """ for i in range(len(self.optimal_list)): if i % 3 == 2: continue else: self.optimal_list[i] = round(self.optimal_list[i] * self.mileage / 100000, 8) self.optimal1_dict = {key: value * self.mileage / 100000 for key, value in self.optimal1_dict.copy().items()} self.optimal2_dict = {key: value * self.mileage / 100000 for key, value in self.optimal2_dict.copy().items()} # [log] self.ego_df['ip_acc'] = self.ego_df['v'].apply(get_interpolation, point1=[18, 4], point2=[72, 2]) self.ego_df['ip_dec'] = self.ego_df['v'].apply(get_interpolation, point1=[18, -5], point2=[72, -3.5]) self.ego_df['slam_brake'] = self.ego_df.apply( lambda row: self._slam_brake_process(row['lon_acc'], row['ip_dec']), axis=1) self.ego_df['slam_accel'] = self.ego_df.apply( lambda row: self._slam_accelerate_process(row['lon_acc'], row['ip_acc']), axis=1) self.ego_df['cadence'] = self.ego_df.apply( lambda row: self._cadence_process_new(row['lon_acc'], row['ip_acc'], row['ip_dec']), axis=1) self.accel_list = self.ego_df['accel'].values.tolist() self.accelH_list = self.ego_df['accelH'].values.tolist() self.linear_accel_dict = self._cal_max_min_avg(self.ego_df['accel'].dropna().values.tolist()) self.angular_accel_dict = self._cal_max_min_avg(self.ego_df['accelH'].dropna().values.tolist()) # for shake detector # self.ego_df['cur_ego_path'] = self.ego_df.apply(self._cal_cur_ego_path, axis=1) # self.ego_df['curvHor'] = self.ego_df['curvHor'].astype('float') # self.ego_df['cur_diff'] = (self.ego_df['cur_ego_path'] - self.ego_df['curvHor']).abs() # self.ego_df['R'] = self.ego_df['curvHor'].apply(lambda x: 10000 if x == 0 else 1 / x) # self.ego_df['R_ego'] = self.ego_df['cur_ego_path'].apply(lambda x: 10000 if x == 0 else 1 / x) # self.ego_df['R_diff'] = (self.ego_df['R_ego'] - self.ego_df['R']).abs() # # self.cur_ego_path_list = self.ego_df['cur_ego_path'].values.tolist() # self.curvature_list = self.ego_df['curvHor'].values.tolist() def _peak_valley_determination(self, df): """ Determine the peak and valley of the vehicle based on its current angular velocity. Parameters: df: Dataframe containing the vehicle angular velocity. Returns: peak_valley: List of indices representing peaks and valleys. """ peaks, _ = scipy.signal.find_peaks(df['speedH'], height=0.01, distance=1, prominence=0.01) valleys, _ = scipy.signal.find_peaks(-df['speedH'], height=0.01, distance=1, prominence=0.01) peak_valley = sorted(list(peaks) + list(valleys)) return peak_valley def _peak_valley_judgment(self, p_last, p_curr, tw=6000, avg=0.4): """ Determine if the given peaks and valleys satisfy certain conditions. Parameters: p_last: Previous peak or valley data point. p_curr: Current peak or valley data point. tw: Threshold time difference between peaks and valleys. avg: Angular velocity gap threshold. Returns: Boolean indicating whether the conditions are satisfied. """ t_diff = p_curr[0] - p_last[0] v_diff = abs(p_curr[1] - p_last[1]) s = p_curr[1] * p_last[1] zigzag_flag = t_diff < tw and v_diff > avg and s < 0 if zigzag_flag and ([p_last[0], p_curr[0]] not in self.zigzag_time_list): self.zigzag_time_list.append([p_last[0], p_curr[0]]) return zigzag_flag @peak_valley_decorator def zigzag_count_func(self, p_curr, p_last, flag=True): """ Count the number of zigzag movements. Parameters: df: Input dataframe data. Returns: zigzag_count: Number of zigzag movements. """ if flag: self.zigzag_count += 1 else: self.zigzag_count += 0 @peak_valley_decorator def cal_zigzag_strength_strength(self, p_curr, p_last, flag=True): """ Calculate various strength statistics. Returns: Tuple containing maximum strength, minimum strength, average strength, and 99th percentile strength. """ if flag: v_diff = abs(p_curr[1] - p_last[1]) t_diff = p_curr[0] - p_last[0] self.zigzag_stre_list.append(v_diff / t_diff) # 平均角加速度 else: self.zigzag_stre_list = [] def _shake_detector(self, Cr_diff=0.05, T_diff=0.39): """ ego车横向加速度ax; ego车轨迹横向曲率; ego车轨迹曲率变化率; ego车所在车lane曲率; ego车所在车lane曲率变化率; 转向灯(暂时存疑,可不用)Cr_diff = 0.1, T_diff = 0.04 求解曲率公式k(t) = (x'(t) * y''(t) - y'(t) * x''(t)) / ((x'(t))^2 + (y'(t))^2)^(3/2) """ time_list = [] frame_list = [] shake_time_list = [] df = self.ego_df.copy() df = df[df['cur_diff'] > Cr_diff] df['frame_ID_diff'] = df['simFrame'].diff() # 找出行车轨迹曲率与道路曲率之差大于阈值的数据段 filtered_df = df[df.frame_ID_diff > T_diff] # 此处是用大间隔区分多次晃动情景 。 row_numbers = filtered_df.index.tolist() cut_column = pd.cut(df.index, bins=row_numbers) grouped = df.groupby(cut_column) dfs = {} for name, group in grouped: dfs[name] = group.reset_index(drop=True) for name, df_group in dfs.items(): # 直道,未主动换道 df_group['curvHor'] = df_group['curvHor'].abs() df_group_straight = df_group[(df_group.lightMask == 0) & (df_group.curvHor < 0.001)] if not df_group_straight.empty: tmp_list = df_group_straight['simTime'].values # shake_time_list.append([tmp_list[0], tmp_list[-1]]) time_list.extend(df_group_straight['simTime'].values) frame_list.extend(df_group_straight['simFrame'].values) self.shake_count = self.shake_count + 1 # 打转向灯,道路为直道,此时晃动判断标准车辆曲率变化率为一个更大的阈值 df_group_change_lane = df_group[(df_group['lightMask'] != 0) & (df_group['curvHor'] < 0.001)] df_group_change_lane_data = df_group_change_lane[df_group_change_lane.cur_diff > Cr_diff + 0.2] if not df_group_change_lane_data.empty: tmp_list = df_group_change_lane_data['simTime'].values # shake_time_list.append([tmp_list[0], tmp_list[-1]]) time_list.extend(df_group_change_lane_data['simTime'].values) frame_list.extend(df_group_change_lane_data['simFrame'].values) self.shake_count = self.shake_count + 1 # 转弯,打转向灯 df_group_turn = df_group[(df_group['lightMask'] != 0) & (df_group['curvHor'].abs() > 0.001)] df_group_turn_data = df_group_turn[df_group_turn.cur_diff.abs() > Cr_diff + 0.1] if not df_group_turn_data.empty: tmp_list = df_group_turn_data['simTime'].values # shake_time_list.append([tmp_list[0], tmp_list[-1]]) time_list.extend(df_group_turn_data['simTime'].values) frame_list.extend(df_group_turn_data['simFrame'].values) self.shake_count = self.shake_count + 1 t_list = time_list f_list = frame_list group_time = [] group_frame = [] sub_group_time = [] sub_group_frame = [] for i in range(len(f_list)): if not sub_group_time or t_list[i] - t_list[i - 1] <= 0.2: sub_group_time.append(t_list[i]) sub_group_frame.append(f_list[i]) else: group_time.append(sub_group_time) group_frame.append(sub_group_frame) sub_group_time = [t_list[i]] sub_group_frame = [f_list[i]] # group_time.append(sub_group_time) # group_frame.append(sub_group_frame) # group_time = [g for g in group_time if len(g) >= 3] # group_frame = [g for g in group_frame if len(g) >= 3] # # group_time = [] # sub_group = [] # for i in range(len(t_list)): # if not sub_group or t_list[i] - t_list[i - 1] <= 0.2: # sub_group.append(t_list[i]) # else: # group_time.append(sub_group) # sub_group = [t_list[i]] # # group_time.append(sub_group) # group_time = [g for g in group_time if len(g) >= 3] # 输出图表值 shake_time = [[g[0], g[-1]] for g in group_time] shake_frame = [[g[0], g[-1]] for g in group_frame] self.shake_count = len(shake_time) if shake_time: time_df = pd.DataFrame(shake_time, columns=['start_time', 'end_time']) frame_df = pd.DataFrame(shake_frame, columns=['start_frame', 'end_frame']) discomfort_df = pd.concat([time_df, frame_df], axis=1) discomfort_df['type'] = 'shake' self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True) return time_list def _cadence_process(self, lon_acc_roc, ip_dec_roc): if abs(lon_acc_roc) >= abs(ip_dec_roc) or abs(lon_acc_roc) < 1: return np.nan # elif abs(lon_acc_roc) == 0: elif abs(lon_acc_roc) == 0: return 0 elif lon_acc_roc > 0 and lon_acc_roc < -ip_dec_roc: return 1 elif lon_acc_roc < 0 and lon_acc_roc > ip_dec_roc: return -1 def _slam_brake_process(self, lon_acc, ip_dec): if lon_acc - ip_dec < 0: return 1 else: return 0 def _slam_accelerate_process(self, lon_acc, ip_acc): if lon_acc - ip_acc > 0: return 1 else: return 0 def _cadence_process_new(self, lon_acc, ip_acc, ip_dec): if abs(lon_acc) < 1 or lon_acc > ip_acc or lon_acc < ip_dec: return np.nan # elif abs(lon_acc_roc) == 0: elif abs(lon_acc) == 0: return 0 elif lon_acc > 0 and lon_acc < ip_acc: return 1 elif lon_acc < 0 and lon_acc > ip_dec: return -1 def _cadence_detector(self): """ # 加速度突变:先加后减,先减后加,先加然后停,先减然后停 # 顿挫:2s内多次加速度变化率突变 # 求出每一个特征点,然后提取,然后将每一个特征点后面的2s做一个窗口,统计频率,避免无效运算 # 将特征点筛选出来 # 将特征点时间作为聚类标准,大于1s的pass,小于等于1s的聚类到一个分组 # 去掉小于3个特征点的分组 """ # data = self.ego_df[['simTime', 'simFrame', 'lon_acc_roc', 'cadence']].copy() data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'lon_acc_roc', 'cadence']].copy() time_list = data['simTime'].values.tolist() data = data[data['cadence'] != np.nan] data['cadence_diff'] = data['cadence'].diff() data.dropna(subset='cadence_diff', inplace=True) data = data[data['cadence_diff'] != 0] t_list = data['simTime'].values.tolist() f_list = data['simFrame'].values.tolist() group_time = [] group_frame = [] sub_group_time = [] sub_group_frame = [] for i in range(len(f_list)): if not sub_group_time or t_list[i] - t_list[i - 1] <= 1: # 特征点相邻一秒内的,算作同一组顿挫 sub_group_time.append(t_list[i]) sub_group_frame.append(f_list[i]) else: group_time.append(sub_group_time) group_frame.append(sub_group_frame) sub_group_time = [t_list[i]] sub_group_frame = [f_list[i]] group_time.append(sub_group_time) group_frame.append(sub_group_frame) group_time = [g for g in group_time if len(g) >= 1] # 有一次特征点则算作一次顿挫 group_frame = [g for g in group_frame if len(g) >= 1] # group_time = [] # sub_group = [] # # for i in range(len(f_list)): # if not sub_group or t_list[i] - t_list[i - 1] <= 1: # 特征点相邻一秒内的,算作同一组顿挫 # sub_group.append(t_list[i]) # else: # group_time.append(sub_group) # sub_group = [t_list[i]] # # group_time.append(sub_group) # group_time = [g for g in group_time if len(g) >= 1] # 有一次特征点则算作一次顿挫 # 输出图表值 cadence_time = [[g[0], g[-1]] for g in group_time] cadence_frame = [[g[0], g[-1]] for g in group_frame] if cadence_time: time_df = pd.DataFrame(cadence_time, columns=['start_time', 'end_time']) frame_df = pd.DataFrame(cadence_frame, columns=['start_frame', 'end_frame']) discomfort_df = pd.concat([time_df, frame_df], axis=1) discomfort_df['type'] = 'cadence' self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True) # 将顿挫组的起始时间为组重新统计时间 cadence_time_list = [time for pair in cadence_time for time in time_list if pair[0] <= time <= pair[1]] # time_list = [element for sublist in group_time for element in sublist] # merged_list = [element for sublist in res_group for element in sublist] # res_df = data[data['simTime'].isin(merged_list)] stre_list = [] freq_list = [] for g in group_time: # calculate strength g_df = data[data['simTime'].isin(g)] strength = g_df['lon_acc'].abs().mean() stre_list.append(strength) # calculate frequency cnt = len(g) t_start = g_df['simTime'].iloc[0] t_end = g_df['simTime'].iloc[-1] t_delta = t_end - t_start frequency = cnt / t_delta freq_list.append(frequency) self.cadence_count = len(freq_list) cadence_stre = sum(stre_list) / len(stre_list) if stre_list else 0 return cadence_time_list def _slam_brake_detector(self): # 统计急刹全为1的分段的个数,记录分段开头的frame_ID # data = self.ego_df[['simTime', 'simFrame', 'lon_acc_roc', 'ip_dec_roc', 'slam_brake']].copy() data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'lon_acc_roc', 'ip_dec', 'slam_brake']].copy() # data['slam_diff'] = data['slam_brake'].diff() # res_df = data[data['slam_diff'] == 1] res_df = data[data['slam_brake'] == 1] t_list = res_df['simTime'].values f_list = res_df['simFrame'].values.tolist() group_time = [] group_frame = [] sub_group_time = [] sub_group_frame = [] for i in range(len(f_list)): if not sub_group_time or f_list[i] - f_list[i - 1] <= 1: # 连续帧的算作同一组急刹 sub_group_time.append(t_list[i]) sub_group_frame.append(f_list[i]) else: group_time.append(sub_group_time) group_frame.append(sub_group_frame) sub_group_time = [t_list[i]] sub_group_frame = [f_list[i]] group_time.append(sub_group_time) group_frame.append(sub_group_frame) group_time = [g for g in group_time if len(g) >= 2] # 达到两帧算作一次急刹 group_frame = [g for g in group_frame if len(g) >= 2] # group_time = [] # sub_group = [] # # for i in range(len(f_list)): # if not sub_group or f_list[i] - f_list[i - 1] <= 1: # 连续帧的算作同一组急刹 # sub_group.append(t_list[i]) # else: # group_time.append(sub_group) # sub_group = [t_list[i]] # # group_time.append(sub_group) # group_time = [g for g in group_time if len(g) >= 2] # 达到两帧算作一次急刹 # 输出图表值 slam_brake_time = [[g[0], g[-1]] for g in group_time] slam_brake_frame = [[g[0], g[-1]] for g in group_frame] if slam_brake_time: time_df = pd.DataFrame(slam_brake_time, columns=['start_time', 'end_time']) frame_df = pd.DataFrame(slam_brake_frame, columns=['start_frame', 'end_frame']) discomfort_df = pd.concat([time_df, frame_df], axis=1) discomfort_df['type'] = 'slam_brake' self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True) time_list = [element for sublist in group_time for element in sublist] self.slam_brake_count = len(group_time) # / self.mileage # * 1000000 return time_list def _slam_accel_detector(self): # 统计急刹全为1的分段的个数,记录分段开头的frame_ID # data = self.ego_df[['simTime', 'simFrame', 'lon_acc_roc', 'ip_acc_roc', 'slam_accel']].copy() data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'ip_acc', 'slam_accel']].copy() # data['slam_diff'] = data['slam_accel'].diff() # res_df = data.loc[data['slam_diff'] == 1] res_df = data.loc[data['slam_accel'] == 1] t_list = res_df['simTime'].values f_list = res_df['simFrame'].values.tolist() group_time = [] group_frame = [] sub_group_time = [] sub_group_frame = [] for i in range(len(f_list)): if not group_time or f_list[i] - f_list[i - 1] <= 1: # 连续帧的算作同一组急加速 sub_group_time.append(t_list[i]) sub_group_frame.append(f_list[i]) else: group_time.append(sub_group_time) group_frame.append(sub_group_frame) sub_group_time = [t_list[i]] sub_group_frame = [f_list[i]] group_time.append(sub_group_time) group_frame.append(sub_group_frame) group_time = [g for g in group_time if len(g) >= 2] group_frame = [g for g in group_frame if len(g) >= 2] # group_time = [] # sub_group = [] # # for i in range(len(f_list)): # if not sub_group or f_list[i] - f_list[i - 1] <= 1: # 连续帧的算作同一组急加速 # sub_group.append(t_list[i]) # else: # group_time.append(sub_group) # sub_group = [t_list[i]] # # group_time.append(sub_group) # group_time = [g for g in group_time if len(g) >= 2] # 达到两帧算作一次急加速 # 输出图表值 slam_accel_time = [[g[0], g[-1]] for g in group_time] slam_accel_frame = [[g[0], g[-1]] for g in group_frame] if slam_accel_time: time_df = pd.DataFrame(slam_accel_time, columns=['start_time', 'end_time']) frame_df = pd.DataFrame(slam_accel_frame, columns=['start_frame', 'end_frame']) discomfort_df = pd.concat([time_df, frame_df], axis=1) discomfort_df['type'] = 'slam_accel' self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True) time_list = [element for sublist in group_time for element in sublist] self.slam_accel_count = len(group_time) # / self.mileage # * 1000000 return time_list def comf_statistic(self): """ """ # df = self.ego_df[['simTime', 'cur_diff', 'lon_acc', 'lon_acc_roc', 'accelH']].copy() df = self.ego_df[['simTime', 'lon_acc', 'lon_acc_roc', 'accelH']].copy() self.zigzag_count_func() self.cal_zigzag_strength_strength() if self.zigzag_time_list: zigzag_df = pd.DataFrame(self.zigzag_time_list, columns=['start_time', 'end_time']) zigzag_df = get_frame_with_time(zigzag_df, self.ego_df) zigzag_df['type'] = 'zigzag' self.discomfort_df = pd.concat([self.discomfort_df, zigzag_df], ignore_index=True) # discomfort_df = pd.concat([time_df, frame_df], axis=1) # self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True) zigzag_t_list = [] # 只有[t_start, t_end]数对,要提取为完整time list t_list = df['simTime'].values.tolist() for t_start, t_end in self.zigzag_time_list: index_1 = t_list.index(t_start) index_2 = t_list.index(t_end) zigzag_t_list.extend(t_list[index_1:index_2 + 1]) zigzag_t_list = list(set(zigzag_t_list)) # shake_t_list = self._shake_detector() cadence_t_list = self._cadence_detector() slam_brake_t_list = self._slam_brake_detector() slam_accel_t_list = self._slam_accel_detector() # comfort_time_dict = { # 'zigzag_time_list': zigzag_t_list, # 'shake_time_list': shake_t_list, # 'cadence_time_list': cadence_t_list, # 'slam_brake_time_list': slam_brake_t_list, # 'slam_accelerate_time_list': slam_accel_t_list # } discomfort_time_list = zigzag_t_list + cadence_t_list + slam_brake_t_list + slam_accel_t_list discomfort_time_list = sorted(discomfort_time_list) # 排序 discomfort_time_list = list(set(discomfort_time_list)) # 去重 time_diff = self.time_list[3] - self.time_list[2] # time_diff = 0.4 self.discomfort_duration = len(discomfort_time_list) * time_diff df['flag_zigzag'] = df['simTime'].apply(lambda x: 1 if x in zigzag_t_list else 0) # df['flag_shake'] = df['simTime'].apply(lambda x: 1 if x in shake_t_list else 0) df['flag_cadence'] = df['simTime'].apply(lambda x: 1 if x in cadence_t_list else 0) df['flag_slam_brake'] = df['simTime'].apply(lambda x: 1 if x in slam_brake_t_list else 0) df['flag_slam_accel'] = df['simTime'].apply(lambda x: 1 if x in slam_accel_t_list else 0) # hectokilometer = 100000 # 百公里 self.zigzag_duration = df['flag_zigzag'].sum() * time_diff # / self.mileage * hectokilometer # self.shake_duration = df['flag_shake'].sum() * time_diff # / self.mileage * hectokilometer self.cadence_duration = df['flag_cadence'].sum() * time_diff # / self.mileage * hectokilometer self.slam_brake_duration = df['flag_slam_brake'].sum() * time_diff # / self.mileage * hectokilometer self.slam_accel_duration = df['flag_slam_accel'].sum() * time_diff # / self.mileage * hectokilometer # 强度取值可考虑最大值,暂定平均值,具体视数据情况而定 # self.zigzag_strength = np.mean(self.zigzag_stre_list) if self.zigzag_stre_list else 0 self.zigzag_strength = (df['flag_zigzag'] * abs(df['accelH'])).mean() # self.shake_strength = (df['flag_shake'] * abs(df['cur_diff'])).mean() self.cadence_strength = (df['flag_cadence'] * abs(df['lon_acc'])).mean() self.slam_brake_strength = (df['flag_slam_brake'] * abs(df['lon_acc'])).mean() self.slam_accel_strength = (df['flag_slam_accel'] * abs(df['lon_acc'])).mean() self.zigzag_strength = self._nan_detect(self.zigzag_strength) # self.shake_strength = self._nan_detect(self.shake_strength) self.cadence_strength = self._nan_detect(self.cadence_strength) self.slam_brake_strength = self._nan_detect(self.slam_brake_strength) self.slam_accel_strength = self._nan_detect(self.slam_accel_strength) self.count_dict = { "zigzag": self.zigzag_count, # "shake": self.shake_count, "cadence": self.cadence_count, "slamBrake": self.slam_brake_count, "slamAccelerate": self.slam_accel_count } self.duration_dict = { "zigzag": self.zigzag_duration, # "shake": self.shake_duration, "cadence": self.cadence_duration, "slamBrake": self.slam_brake_duration, "slamAccelerate": self.slam_accel_duration } self.strength_dict = { "zigzag": self.zigzag_strength, # "shake": self.shake_strength, "cadence": self.cadence_strength, "slamBrake": self.slam_brake_strength, "slamAccelerate": self.slam_accel_strength } zigzag_list = [self.zigzag_count, self.zigzag_duration, self.zigzag_strength] # shake_list = [self.shake_count, self.shake_duration, self.shake_strength] cadence_list = [self.cadence_count, self.cadence_duration, self.cadence_strength] slam_brake_list = [self.slam_brake_count, self.slam_brake_duration, self.slam_brake_strength] slam_accel_list = [self.slam_accel_count, self.slam_accel_duration, self.slam_accel_strength] tmp_comf_arr = [] if "zigzag" in self.metric_list: tmp_comf_arr += zigzag_list self.discomfort_count += self.zigzag_count # if "shake" in self.metric_list: # tmp_comf_arr += shake_list # self.discomfort_count += self.shake_count if "cadence" in self.metric_list: tmp_comf_arr += cadence_list self.discomfort_count += self.cadence_count if "slamBrake" in self.metric_list: tmp_comf_arr += slam_brake_list self.discomfort_count += self.slam_brake_count if "slamAccelerate" in self.metric_list: tmp_comf_arr += slam_accel_list self.discomfort_count += self.slam_accel_count comf_arr = [tmp_comf_arr] return comf_arr def _nan_detect(self, num): if math.isnan(num): return 0 return num def custom_metric_param_parser(self, param_list): """ param_dict = { "paramA" [ { "kind": "-1", "optimal": "1", "multiple": ["0.5","5"], "spare1": null, "spare2": null } ] } """ kind_list = [] optimal_list = [] multiple_list = [] spare_list = [] # spare1_list = [] # spare2_list = [] for i in range(len(param_list)): kind_list.append(int(param_list[i]['kind'])) optimal_list.append(float(param_list[i]['optimal'])) multiple_list.append([float(x) for x in param_list[i]['multiple']]) spare_list.append([item["param"] for item in param_list[i]["spare"]]) # spare1_list.append(param_list[i]['spare1']) # spare2_list.append(param_list[i]['spare2']) result = { "kind": kind_list, "optimal": optimal_list, "multiple": multiple_list, "spare": spare_list, # "spare1": spare1_list, # "spare2": spare2_list } return result def custom_metric_score(self, metric, value, param_list): """ """ param = self.custom_metric_param_parser(param_list) self.custom_param_dict[metric] = param score_model = self.scoreModel(param['kind'], param['optimal'], param['multiple'], np.array([value])) score_sub = score_model.cal_score() score = sum(score_sub) / len(score_sub) return score def comf_score_new(self): arr_comf = self.comf_statistic() print("\n[平顺性表现及得分情况]") print("平顺性各指标值:", [[round(num, 2) for num in row] for row in arr_comf]) arr_comf = np.array(arr_comf) score_model = self.scoreModel(self.kind_list, self.optimal_list, self.multiple_list, arr_comf) score_sub = score_model.cal_score() score_sub = list(map(lambda x: 80 if np.isnan(x) else x, score_sub)) metric_list = [x for x in self.metric_list if x in self.config.builtinMetricList] score_metric = [] for i in range(len(metric_list)): score_tmp = (score_sub[i * 3 + 0] + score_sub[i * 3 + 1] + score_sub[i * 3 + 2]) / 3 score_metric.append(round(score_tmp, 2)) score_metric_dict = {key: value for key, value in zip(metric_list, score_metric)} custom_metric_list = list(self.customMetricParam.keys()) for metric in custom_metric_list: value = self.custom_data[metric]['value'] param_list = self.customMetricParam[metric] score = self.custom_metric_score(metric, value, param_list) score_metric_dict[metric] = round(score, 2) score_metric_dict = {key: score_metric_dict[key] for key in self.metric_list} score_metric = list(score_metric_dict.values()) score_type_dict = {} if self.weight_custom: # 自定义权重 score_metric_with_weight_dict = {key: score_metric_dict[key] * self.weight_dict[key] for key in self.weight_dict} for type in self.type_list: type_score = sum( value for key, value in score_metric_with_weight_dict.items() if key in self.metric_dict[type]) score_type_dict[type] = round(type_score, 2) score_type_with_weight_dict = {key: score_type_dict[key] * self.weight_type_dict[key] for key in score_type_dict} print("comfort score_type_with_weight_dict is", score_type_with_weight_dict) score_comfort = sum(score_type_with_weight_dict.values()) else: # 客观赋权 self.weight_list = cal_weight_from_80(score_metric) self.weight_dict = {key: value for key, value in zip(self.metric_list, self.weight_list)} score_comfort = cal_score_with_priority(score_metric, self.weight_list, self.priority_list) for type in self.type_list: type_weight = sum(value for key, value in self.weight_dict.items() if key in self.metric_dict[type]) self.weight_dict = {key: round(value / type_weight, 4) for key, value in self.weight_dict.items() if key in self.metric_dict[type]} type_score_metric = [value for key, value in score_metric_dict.items() if key in self.metric_dict[type]] type_weight_list = [value for key, value in self.weight_dict.items() if key in self.metric_dict[type]] print("comfort type_weight_list is", type_weight_list) type_priority_list = [value for key, value in self.priority_dict.items() if key in self.metric_dict[type]] type_score = cal_score_with_priority(type_score_metric, type_weight_list, type_priority_list) score_type_dict[type] = round(type_score, 2) score_comfort = round(score_comfort, 2) print("平顺性各指标基准值:", self.optimal_list) print(f"平顺性得分为:{score_comfort:.2f}分。") print(f"平顺性各类型得分为:{score_type_dict}。") print(f"平顺性各指标得分为:{score_metric_dict}。") return score_comfort, score_type_dict, score_metric_dict def zip_time_pairs(self, zip_list, upper_limit=9999): zip_time_pairs = zip(self.time_list, zip_list) zip_vs_time = [[x, upper_limit if y > upper_limit else y] for x, y in zip_time_pairs if not math.isnan(y)] return zip_vs_time def comf_weight_distribution(self): # get weight distribution weight_distribution = {} weight_distribution["name"] = "平顺性" if "comfortLat" in self.type_list: lat_weight_indexes_dict = {key: f"{key}({value * 100:.2f}%)" for key, value in self.weight_dict.items() if key in self.lat_metric_list} weight_distribution_lat = { "latWeight": f"横向舒适度({self.weight_type_dict['comfortLat'] * 100:.2f}%)", "indexes": lat_weight_indexes_dict } weight_distribution['comfortLat'] = weight_distribution_lat if "comfortLon" in self.type_list: lon_weight_indexes_dict = {key: f"{key}({value * 100:.2f}%)" for key, value in self.weight_dict.items() if key in self.lon_metric_list} weight_distribution_lon = { "lonWeight": f"纵向舒适度({self.weight_type_dict['comfortLon'] * 100:.2f}%)", "indexes": lon_weight_indexes_dict } weight_distribution['comfortLon'] = weight_distribution_lon return weight_distribution def _get_weight_distribution(self, dimension): # get weight distribution weight_distribution = {} weight_distribution["name"] = self.config.dimension_name[dimension] for type in self.type_list: type_weight_indexes_dict = {key: f"{self.name_dict[key]}({value * 100:.2f}%)" for key, value in self.weight_dict.items() if key in self.metric_dict[type]} weight_distribution_type = { "weight": f"{self.type_name_dict[type]}({self.weight_type_dict[type] * 100:.2f}%)", "indexes": type_weight_indexes_dict } weight_distribution[type] = weight_distribution_type return weight_distribution def report_statistic(self): """ Returns: """ # report_dict = { # "name": "平顺性", # "weight": f"{self.weight * 100:.2f}%", # "weightDistribution": weight_distribution, # "score": score_comfort, # "level": grade_comfort, # 'discomfortCount': self.discomfort_count, # "description1": comf_description1, # "description2": comf_description2, # "description3": comf_description3, # "description4": comf_description4, # # "comfortLat": lat_dict, # "comfortLon": lon_dict, # # "speData": ego_speed_vs_time, # "speMarkLine": discomfort_slices, # # "accData": lon_acc_vs_time, # "accMarkLine": discomfort_acce_slices, # # "anvData": yawrate_vs_time, # "anvMarkLine": discomfort_zigzag_slices, # # "anaData": yawrate_roc_vs_time, # "anaMarkLine": discomfort_zigzag_slices, # # "curData": [cur_ego_path_vs_time, curvature_vs_time], # "curMarkLine": discomfort_shake_slices, # } # brakePedal_list = self.data_processed.driver_ctrl_data['brakePedal_list'] # throttlePedal_list = self.data_processed.driver_ctrl_data['throttlePedal_list'] # steeringWheel_list = self.data_processed.driver_ctrl_data['steeringWheel_list'] # # # common parameter calculate # brake_vs_time = self.zip_time_pairs(brakePedal_list, 100) # throttle_vs_time = self.zip_time_pairs(throttlePedal_list, 100) # steering_vs_time = self.zip_time_pairs(steeringWheel_list) report_dict = { "name": "平顺性", # "weight": f"{self.weight * 100:.2f}%", # 'discomfortCount': self.discomfort_count, } # upper_limit = 40 # times_upper = 2 # len_time = len(self.time_list) duration = self.time_list[-1] # comfort score and grade score_comfort, score_type_dict, score_metric_dict = self.comf_score_new() # get weight distribution # report_dict["weightDistribution"] = self._get_weight_distribution("comfort") score_comfort = int(score_comfort) if int(score_comfort) == score_comfort else round(score_comfort, 2) grade_comfort = score_grade(score_comfort) report_dict["score"] = score_comfort report_dict["level"] = grade_comfort # comfort data for graph ego_speed_list = self.ego_df['v'].values.tolist() ego_speed_vs_time = self.zip_time_pairs(ego_speed_list) lon_acc_list = self.ego_df['lon_acc'].values.tolist() lon_acc_vs_time = self.zip_time_pairs(lon_acc_list) yawrate_list = self.ego_df['speedH'].values.tolist() yawrate_vs_time = self.zip_time_pairs(yawrate_list) yawrate_roc_list = self.ego_df['accelH'].values.tolist() yawrate_roc_vs_time = self.zip_time_pairs(yawrate_roc_list) cur_ego_path_vs_time = self.zip_time_pairs(self.cur_ego_path_list) curvature_vs_time = self.zip_time_pairs(self.curvature_list) # markline # discomfort_df = self.discomfort_df.copy() # discomfort_df['type'] = "origin" # discomfort_slices = discomfort_df.to_dict('records') # # discomfort_zigzag_df = self.discomfort_df.copy() # discomfort_zigzag_df.loc[discomfort_zigzag_df['type'] != 'zigzag', 'type'] = "origin" # discomfort_zigzag_slices = discomfort_zigzag_df.to_dict('records') # # discomfort_shake_df = self.discomfort_df.copy() # discomfort_shake_df.loc[discomfort_shake_df['type'] != 'shake', 'type'] = "origin" # discomfort_shake_slices = discomfort_shake_df.to_dict('records') # # discomfort_acce_df = self.discomfort_df.copy() # discomfort_acce_df.loc[discomfort_acce_df['type'] == 'zigzag', 'type'] = "origin" # discomfort_acce_df.loc[discomfort_acce_df['type'] == 'shake', 'type'] = "origin" # discomfort_acce_slices = discomfort_acce_df.to_dict('records') # for description good_type_list = [] bad_type_list = [] good_metric_list = [] bad_metric_list = [] # str for comf description 1&2 str_uncomf_count = '' str_uncomf_over_optimal = '' # type_details_dict = {} # for type in self.type_list: # bad_type_list.append(type) if score_type_dict[type] < 80 else good_type_list.append(type) # # type_dict = { # "name": f"{self.type_name_dict[type]}", # } # # builtin_graph_dict = {} # custom_graph_dict = {} # # score_type = score_type_dict[type] # grade_type = score_grade(score_type) # type_dict["score"] = score_type # type_dict["level"] = grade_type # # type_dict_indexes = {} # # flag_acc = False # for metric in self.metric_dict[type]: # bad_metric_list.append(metric) if score_metric_dict[metric] < 80 else good_metric_list.append(metric) # # if metric in self.bulitin_metric_list: # # for indexes # type_dict_indexes[metric] = { # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})", # "score": score_metric_dict[metric], # "numberReal": f"{self.count_dict[metric]}", # "numberRef": f"{self.optimal1_dict[metric]:.4f}", # "durationReal": f"{self.duration_dict[metric]:.2f}", # "durationRef": f"{self.optimal2_dict[metric]:.4f}", # "strengthReal": f"{self.strength_dict[metric]:.2f}", # "strengthRef": f"{self.optimal3_dict[metric]}" # } # # # for description # str_uncomf_count += f'{self.count_dict[metric]}次{self.name_dict[metric]}行为、' # if self.count_dict[metric] > self.optimal1_dict[metric]: # over_optimal = ((self.count_dict[metric] - self.optimal1_dict[metric]) / self.optimal1_dict[ # metric]) * 100 # str_uncomf_over_optimal += f'{self.name_dict[metric]}次数比基准值高{over_optimal:.2f}%,' # # if self.duration_dict[metric] > self.optimal2_dict[metric]: # over_optimal = ((self.duration_dict[metric] - self.optimal2_dict[metric]) / self.optimal2_dict[ # metric]) * 100 # str_uncomf_over_optimal += f'{self.name_dict[metric]}时长比基准值高{over_optimal:.2f}%,' # # if self.strength_dict[metric] > self.optimal3_dict[metric]: # over_optimal = ((self.strength_dict[metric] - self.optimal3_dict[metric]) / self.optimal3_dict[ # metric]) * 100 # str_uncomf_over_optimal += f'{self.name_dict[metric]}强度比基准值高{over_optimal:.2f}%;' # # # report_dict["speData"] = ego_speed_vs_time # # report_dict["accData"] = lon_acc_vs_time # # report_dict["anvData"] = yawrate_vs_time # # report_dict["anaData"] = yawrate_roc_vs_time # # report_dict["curData"] = [cur_ego_path_vs_time, curvature_vs_time] # # # report_dict["speMarkLine"] = discomfort_slices # # report_dict["accMarkLine"] = discomfort_acce_slices # # report_dict["anvMarkLine"] = discomfort_zigzag_slices # # report_dict["anaMarkLine"] = discomfort_zigzag_slices # # report_dict["curMarkLine"] = discomfort_shake_slices # # if metric == "zigzag": # metric_data = { # "name": "横摆角加速度(rad/s²)", # "data": yawrate_roc_vs_time, # "range": f"[0, {self.optimal3_dict[metric]}]", # # "markLine": discomfort_zigzag_slices # } # builtin_graph_dict[metric] = metric_data # # elif metric == "shake": # metric_data = { # "name": "曲率(1/m)", # "legend": ["自车轨迹曲率", "车道中心线曲率"], # "data": [cur_ego_path_vs_time, curvature_vs_time], # "range": f"[0, {self.optimal3_dict[metric]}]", # # "markLine": discomfort_shake_slices # } # builtin_graph_dict[metric] = metric_data # # elif metric in ["cadence", "slamBrake", "slamAccelerate"] and not flag_acc: # metric_data = { # "name": "自车纵向加速度(m/s²)", # "data": lon_acc_vs_time, # "range": f"[0, {self.optimal3_dict[metric]}]", # # "markLine": discomfort_acce_slices # } # flag_acc = True # # builtin_graph_dict[metric] = metric_data # # else: # # for indexes # type_dict_indexes[metric] = { # "name": f"{self.name_dict[metric]}({self.unit_dict[metric]})", # "score": score_metric_dict[metric], # "numberReal": f"{self.custom_data[metric]['tableData']['avg']}", # "numberRef": f"-", # "durationReal": f"{self.custom_data[metric]['tableData']['max']}", # "durationRef": f"-", # "strengthReal": f"{self.custom_data[metric]['tableData']['min']}", # "strengthRef": f"-" # } # custom_graph_dict[metric] = self.custom_data[metric]['reportData'] # # str_uncomf_over_optimal = str_uncomf_over_optimal[:-1] + ";" # type_dict["indexes"] = type_dict_indexes # type_dict["builtin"] = builtin_graph_dict # type_dict["custom"] = custom_graph_dict # # type_details_dict[type] = type_dict # report_dict["details"] = type_details_dict # str for comf description2 # if grade_comfort == '优秀': # comf_description1 = '机器人在本轮测试中行驶平顺;' # elif grade_comfort == '良好': # comf_description1 = '机器人在本轮测试中的表现满⾜设计指标要求;' # elif grade_comfort == '一般': # str_bad_metric = string_concatenate(bad_metric_list) # comf_description1 = f'未满足设计指标要求。需要在{str_bad_metric}上进一步优化。在{(self.mileage / 1000):.2f}公里内,共发生{str_uncomf_count[:-1]};' # elif grade_comfort == '较差': # str_bad_metric = string_concatenate(bad_metric_list) # comf_description1 = f'机器人行驶极不平顺,未满足设计指标要求。需要在{str_bad_metric}上进一步优化。在{(self.mileage / 1000):.2f}公里内,共发生{str_uncomf_count[:-1]};' # # if not bad_metric_list: # str_comf_type = string_concatenate(good_metric_list) # comf_description2 = f"{str_comf_type}均表现良好" # else: # str_bad_metric = string_concatenate(bad_metric_list) # # if not good_metric_list: # comf_description2 = f"{str_bad_metric}表现不佳。其中{str_uncomf_over_optimal}" # else: # str_comf_type = string_concatenate(good_metric_list) # comf_description2 = f"{str_comf_type}表现良好;{str_bad_metric}表现不佳。其中{str_uncomf_over_optimal}" # # # str for comf description3 # control_type = [] # if 'zigzag' in bad_metric_list or 'shake' in bad_metric_list: # control_type.append('横向') # if 'cadence' in bad_metric_list or 'slamBrake' in bad_metric_list or 'slamAccelerate' in bad_metric_list in bad_metric_list: # control_type.append('纵向') # str_control_type = '和'.join(control_type) # # if not control_type: # comf_description3 = f"机器人的横向和纵向控制表现俱佳,行驶平顺" # else: # comf_description3 = f"应该优化对机器人的{str_control_type}控制,优化行驶平顺性" # # uncomf_time = self.discomfort_duration # if uncomf_time == 0: # comf_description4 = "" # else: # percent4 = uncomf_time / duration * 100 # # comf_description4 = f"在{duration}s时间内,机器人有{percent4:.2f}%的时间存在行驶不平顺的情况。" # comf_description4 = f"在{duration}s时间内,机器人有{uncomf_time:.2f}s的时间存在行驶不平顺的情况。" # report_dict["description1"] = replace_key_with_value(comf_description1, self.name_dict) # report_dict["description2"] = replace_key_with_value(comf_description2, self.name_dict) # report_dict["description3"] = comf_description3 # report_dict["description4"] = comf_description4 description = "· 在平顺性方面," if any(score_metric_dict[metric] < 80 for metric in self.lon_metric_list): description += "线加速度变化剧烈," tmp = [metric for metric in self.lon_metric_list if score_metric_dict[metric] < 80] str_tmp = "、".join(tmp) description += f"有{str_tmp}情况,需重点优化。" if any(score_metric_dict[metric] < 80 for metric in self.lat_metric_list): description += "角加速度变化剧烈," tmp = [metric for metric in self.lat_metric_list if score_metric_dict[metric] < 80] str_tmp = "、".join(tmp) description += f"有{str_tmp}情况,需重点优化。" if description == "在平顺性方面,": description += f"线加速度和角加速度变化平顺,表现{grade_comfort}。" report_dict["description"] = replace_key_with_value(description, self.name_dict) description1 = f"最大值:{self.linear_accel_dict['max']:.4f}m/s²;" \ f"最小值:{self.linear_accel_dict['min']:.4f}m/s²;" \ f"平均值:{self.linear_accel_dict['avg']:.4f}m/s²" description2 = f"最大值:{self.angular_accel_dict['max']:.4f}rad/s²;" \ f"最小值:{self.angular_accel_dict['min']:.4f}rad/s²;" \ f"平均值:{self.angular_accel_dict['avg']:.4f}rad/s²" report_dict["description1"] = description1 report_dict["description2"] = description2 plt.figure(figsize=(12, 3)) plt.plot(self.time_list, self.accel_list) plt.xlabel('Time(s)') plt.ylabel('Linear Accelerate(m/s^2)') # plt.legend() # 调整布局,消除空白边界 plt.tight_layout() plt.savefig(os.path.join(self.casePath, "LinearAccelerate.png")) plt.close() plt.figure(figsize=(12, 3)) plt.plot(self.time_list, self.accelH_list) plt.xlabel('Time(s)') plt.ylabel('Angular Accelerate(rad/s^2)') # plt.legend() # 调整布局,消除空白边界 plt.tight_layout() plt.savefig(os.path.join(self.casePath, "AngularAccelerate.png")) plt.close() print(report_dict) # report_dict['commonData'] = { # # "per": { # # "name": "刹车/油门踏板开度(百分比)", # # "legend": ["刹车踏板开度", "油门踏板开度"], # # "data": [brake_vs_time, throttle_vs_time] # # }, # # "ang": { # # "name": "方向盘转角(角度°)", # # "data": steering_vs_time # # }, # "spe": { # "name": "速度(km/h)", # # "legend": ["自车速度", "目标车速度", "自车与目标车相对速度"], # "data": ego_speed_vs_time # # }, # # "acc": { # # "name": "自车纵向加速度(m/s²)", # # "data": lon_acc_vs_time # # # # }, # # "dis": { # # "name": "前车距离(m)", # # "data": distance_vs_time # # } # } # report_dict["commonMarkLine"] = discomfort_slices # report_dict = { # "name": "平顺性", # "weight": f"{self.weight * 100:.2f}%", # "weightDistribution": weight_distribution, # "score": score_comfort, # "level": grade_comfort, # 'discomfortCount': self.discomfort_count, # "description1": comf_description1, # "description2": comf_description2, # "description3": comf_description3, # "description4": comf_description4, # # "comfortLat": lat_dict, # "comfortLon": lon_dict, # # "speData": ego_speed_vs_time, # "speMarkLine": discomfort_slices, # # "accData": lon_acc_vs_time, # "accMarkLine": discomfort_acce_slices, # # "anvData": yawrate_vs_time, # "anvMarkLine": discomfort_zigzag_slices, # # "anaData": yawrate_roc_vs_time, # "anaMarkLine": discomfort_zigzag_slices, # # "curData": [cur_ego_path_vs_time, curvature_vs_time], # "curMarkLine": discomfort_shake_slices, # } # self.eval_data = self.ego_df.copy() # self.eval_data['playerId'] = 1 return report_dict def get_eval_data(self): df = self.eval_data[ ['simTime', 'simFrame', 'playerId', 'ip_acc', 'ip_dec', 'slam_brake', 'slam_accel', 'cadence']].copy() return df