|
@@ -14,9 +14,9 @@
|
|
|
|
|
|
import sys
|
|
|
import math
|
|
|
+import scipy.signal
|
|
|
import pandas as pd
|
|
|
import numpy as np
|
|
|
-import scipy.signal
|
|
|
from pathlib import Path
|
|
|
from typing import Dict, List, Any, Optional, Callable, Union, Tuple
|
|
|
|
|
@@ -26,6 +26,7 @@ from modules.lib import data_process
|
|
|
|
|
|
from modules.lib.log_manager import LogManager
|
|
|
|
|
|
+# 更新COMFORT_INFO列表,添加posH字段
|
|
|
COMFORT_INFO = [
|
|
|
"simTime",
|
|
|
"simFrame",
|
|
@@ -43,10 +44,47 @@ COMFORT_INFO = [
|
|
|
"lon_acc_roc",
|
|
|
"speedH",
|
|
|
"accelH",
|
|
|
+ "posH", # 添加航向角字段
|
|
|
]
|
|
|
# ----------------------
|
|
|
# 独立指标计算函数
|
|
|
# ----------------------
|
|
|
+def motionComfortIndex(data_processed) -> dict:
|
|
|
+ """计算运动舒适度指数"""
|
|
|
+ comfort = Comfort(data_processed)
|
|
|
+ index = comfort.calculate_motion_comfort_index()
|
|
|
+ return {"motionComfortIndex": float(index)}
|
|
|
+
|
|
|
+def rideQualityScore(data_processed) -> dict:
|
|
|
+ """计算乘坐质量评分"""
|
|
|
+ comfort = Comfort(data_processed)
|
|
|
+ score = comfort.calculate_ride_quality_score()
|
|
|
+ return {"rideQualityScore": float(score)}
|
|
|
+
|
|
|
+def calculate_motionsickness(data_processed) -> dict:
|
|
|
+ """计算晕车概率指标"""
|
|
|
+ comfort = ComfortCalculator(data_processed)
|
|
|
+ motion_sickness_prob = comfort.calculate_motion_sickness_probability()
|
|
|
+ return {"motionSickness": float(motion_sickness_prob)}
|
|
|
+
|
|
|
+def calculate_vdv(data_processed) -> dict:
|
|
|
+ """计算振动剂量值(Vibration Dose Value, VDV)指标"""
|
|
|
+ comfort = ComfortCalculator(data_processed)
|
|
|
+ vdv_value = comfort.calculate_vdv()
|
|
|
+ return {"vdv": float(vdv_value)}
|
|
|
+
|
|
|
+def calculate_ava_vav(data_processed) -> dict:
|
|
|
+ """计算多维度综合加权加速度"""
|
|
|
+ comfort = ComfortCalculator(data_processed)
|
|
|
+ ava_vav_value = comfort.calculate_ava_vav()
|
|
|
+ return {"ava_vav": float(ava_vav_value)}
|
|
|
+
|
|
|
+def calculate_msdv(data_processed) -> dict:
|
|
|
+ """计算晕动剂量值(MSDV)指标"""
|
|
|
+ comfort = ComfortCalculator(data_processed)
|
|
|
+ msdv_value = comfort.calculate_msdv()
|
|
|
+ return {"msdv": float(msdv_value)}
|
|
|
+
|
|
|
def calculate_weaving(data_processed) -> dict:
|
|
|
"""计算蛇行指标"""
|
|
|
comfort = ComfortCalculator(data_processed)
|
|
@@ -77,7 +115,6 @@ def calculate_slamaccelerate(data_processed) -> dict:
|
|
|
slam_accel_count = comfort.calculate_slam_accel_count()
|
|
|
return {"slamAccelerate": float(slam_accel_count)}
|
|
|
|
|
|
-
|
|
|
# 装饰器保持不变
|
|
|
def peak_valley_decorator(method):
|
|
|
def wrapper(self, *args, **kwargs):
|
|
@@ -174,7 +211,13 @@ class ComfortCalculator:
|
|
|
'shake': 0,
|
|
|
'cadence': 0,
|
|
|
'slamBrake': 0,
|
|
|
- 'slamAccelerate': 0
|
|
|
+ 'slamAccelerate': 0,
|
|
|
+ 'ava_vav': 0, # 添加新指标的默认值
|
|
|
+ 'msdv': 0, # 添加MSDV指标的默认值
|
|
|
+ 'motionSickness': 0, # 添加晕车概率指标的默认值
|
|
|
+ 'vdt:': 0,
|
|
|
+ 'motionComfortIndex': 0, # 新增指标
|
|
|
+ 'rideQualityScore': 0 # 新增指标
|
|
|
}
|
|
|
|
|
|
self.time_list = self.data['simTime'].values.tolist()
|
|
@@ -209,6 +252,623 @@ class ComfortCalculator:
|
|
|
self.ego_df['cadence'] = self.ego_df.apply(
|
|
|
lambda row: self._cadence_process_new(row['lon_acc'], row['ip_acc'], row['ip_dec']), axis=1)
|
|
|
|
|
|
+ def _apply_frequency_weighting(self, acceleration_data, weighting_type='Wk', fs=100):
|
|
|
+ """应用ISO 2631-1:1997标准的频率加权滤波
|
|
|
+
|
|
|
+ 参数:
|
|
|
+ acceleration_data: 加速度时间序列数据
|
|
|
+ weighting_type: 加权类型,可选值包括:
|
|
|
+ - 'Wk': 垂直方向(Z轴)加权
|
|
|
+ - 'Wd': 水平方向(X和Y轴)加权
|
|
|
+ - 'Wf': 运动病相关加权
|
|
|
+ fs: 采样频率(Hz)
|
|
|
+
|
|
|
+ 返回:
|
|
|
+ 加权后的加速度数据
|
|
|
+ """
|
|
|
+ # 检查数据有效性
|
|
|
+ if acceleration_data.empty or acceleration_data.isna().all():
|
|
|
+ return acceleration_data
|
|
|
+
|
|
|
+ # 根据ISO 2631-1:1997标准设计滤波器
|
|
|
+ # 这些参数来自标准文档,用于构建数字滤波器
|
|
|
+ if weighting_type == 'Wk': # 垂直方向(Z轴)
|
|
|
+ # Wk滤波器参数
|
|
|
+ f1 = 0.4
|
|
|
+ f2 = 100.0
|
|
|
+ f3 = 12.5
|
|
|
+ f4 = 12.5
|
|
|
+ Q1 = 0.63
|
|
|
+ Q2 = 0.5
|
|
|
+ Q3 = 0.63
|
|
|
+ Q4 = 0.63
|
|
|
+ K = 0.4
|
|
|
+ elif weighting_type == 'Wd': # 水平方向(X和Y轴)
|
|
|
+ # Wd滤波器参数
|
|
|
+ f1 = 0.4
|
|
|
+ f2 = 100.0
|
|
|
+ f3 = 2.0
|
|
|
+ f4 = 2.0
|
|
|
+ Q1 = 0.63
|
|
|
+ Q2 = 0.5
|
|
|
+ Q3 = 0.63
|
|
|
+ Q4 = 0.63
|
|
|
+ K = 0.4
|
|
|
+ elif weighting_type == 'Wf': # 运动病相关
|
|
|
+ # Wf滤波器参数
|
|
|
+ f1 = 0.08
|
|
|
+ f2 = 0.63
|
|
|
+ f3 = 0.25
|
|
|
+ f4 = 0.8
|
|
|
+ Q1 = 0.63
|
|
|
+ Q2 = 0.86
|
|
|
+ Q3 = 0.8
|
|
|
+ Q4 = 0.8
|
|
|
+ K = 1.0
|
|
|
+ else:
|
|
|
+ self.logger.warning(f"未知的加权类型: {weighting_type},使用原始数据")
|
|
|
+ return acceleration_data
|
|
|
+
|
|
|
+ # 将频率转换为角频率
|
|
|
+ w1 = 2 * np.pi * f1
|
|
|
+ w2 = 2 * np.pi * f2
|
|
|
+ w3 = 2 * np.pi * f3
|
|
|
+ w4 = 2 * np.pi * f4
|
|
|
+
|
|
|
+ # 设计高通滤波器(s域)
|
|
|
+ b1 = [K * w1**2, 0]
|
|
|
+ a1 = [1, w1/Q1, w1**2]
|
|
|
+
|
|
|
+ # 设计低通滤波器(s域)
|
|
|
+ b2 = [K, 0, 0]
|
|
|
+ a2 = [1, w2/Q2, w2**2]
|
|
|
+
|
|
|
+ # 设计加速度-速度转换滤波器(s域)
|
|
|
+ b3 = [K, 0]
|
|
|
+ a3 = [1, w3/Q3, w3**2]
|
|
|
+
|
|
|
+ # 设计上升滤波器(s域)
|
|
|
+ b4 = [K, 0, 0]
|
|
|
+ a4 = [1, w4/Q4, w4**2]
|
|
|
+
|
|
|
+ # 使用双线性变换将s域滤波器转换为z域
|
|
|
+ b1_z, a1_z = scipy.signal.bilinear(b1, a1, fs)
|
|
|
+ b2_z, a2_z = scipy.signal.bilinear(b2, a2, fs)
|
|
|
+ b3_z, a3_z = scipy.signal.bilinear(b3, a3, fs)
|
|
|
+ b4_z, a4_z = scipy.signal.bilinear(b4, a4, fs)
|
|
|
+
|
|
|
+ # 应用滤波器链
|
|
|
+ data_np = acceleration_data.to_numpy()
|
|
|
+ filtered_data = scipy.signal.lfilter(b1_z, a1_z, data_np)
|
|
|
+ filtered_data = scipy.signal.lfilter(b2_z, a2_z, filtered_data)
|
|
|
+ filtered_data = scipy.signal.lfilter(b3_z, a3_z, filtered_data)
|
|
|
+ filtered_data = scipy.signal.lfilter(b4_z, a4_z, filtered_data)
|
|
|
+
|
|
|
+ return pd.Series(filtered_data, index=acceleration_data.index)
|
|
|
+
|
|
|
+ def calculate_vdv(self):
|
|
|
+ """计算振动剂量值(Vibration Dose Value, VDV)
|
|
|
+
|
|
|
+ VDV更强调"冲击"或"突发"振动事件对整体舒适度的影响,
|
|
|
+ 常用于评估包含较多瞬态冲击或颠簸的振动信号。
|
|
|
+
|
|
|
+ 计算公式: VDV = (∫[0,T] |a_ω(t)|⁴ dt)^(1/4)
|
|
|
+
|
|
|
+ 相较于MSDV的二次累积,VDV的四次累积使其对高幅值短时冲击更为敏感,
|
|
|
+ 能够更准确地反映剧烈颠簸对乘员舒适度的不利影响。
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ float: 振动剂量值
|
|
|
+ """
|
|
|
+ # 获取数据
|
|
|
+ df = self.ego_df.copy()
|
|
|
+
|
|
|
+ # 确保有必要的列
|
|
|
+ if 'accelX' not in df.columns or 'accelY' not in df.columns:
|
|
|
+ self.logger.warning("缺少计算振动剂量值所需的数据列")
|
|
|
+ return self.calculated_value['vdv']
|
|
|
+
|
|
|
+ # 将东北天坐标系下的加速度转换为车身坐标系下的加速度
|
|
|
+ if 'posH' not in df.columns:
|
|
|
+ self.logger.warning("缺少航向角数据,无法进行坐标转换")
|
|
|
+ return self.calculated_value['vdv']
|
|
|
+
|
|
|
+ # 车身坐标系:X轴指向车头,Y轴指向车辆左侧,Z轴指向车顶
|
|
|
+ df['posH_rad'] = np.radians(df['posH'])
|
|
|
+
|
|
|
+ # 转换加速度到车身坐标系
|
|
|
+ df['a_x_body'] = df['accelX'] * np.sin(df['posH_rad']) + df['accelY'] * np.cos(df['posH_rad'])
|
|
|
+ df['a_y_body'] = df['accelX'] * np.cos(df['posH_rad']) - df['accelY'] * np.sin(df['posH_rad'])
|
|
|
+
|
|
|
+ # Z方向加速度,如果没有则假设为0
|
|
|
+ df['a_z_body'] = df['accelZ'] if 'accelZ' in df.columns else pd.Series(np.zeros(len(df)))
|
|
|
+
|
|
|
+ # 计算时间差
|
|
|
+ df['time_diff'] = df['simTime'].diff().fillna(0)
|
|
|
+
|
|
|
+ # 应用ISO 2631-1:1997标准的频率加权滤波
|
|
|
+ # 估计采样频率 - 假设数据是均匀采样的
|
|
|
+ if len(df) > 1:
|
|
|
+ time_diff = df['simTime'].diff().median()
|
|
|
+ fs = 1.0 / time_diff if time_diff > 0 else 100 # 默认100Hz
|
|
|
+ else:
|
|
|
+ fs = 100 # 默认采样频率
|
|
|
+
|
|
|
+ # 对各方向加速度应用适当的频率加权
|
|
|
+ # 对于VDV评估,使用与MSDV相同的加权滤波器
|
|
|
+ a_x_weighted = self._apply_frequency_weighting(df['a_x_body'], 'Wd', fs) # 水平方向使用Wd
|
|
|
+ a_y_weighted = self._apply_frequency_weighting(df['a_y_body'], 'Wd', fs) # 水平方向使用Wd
|
|
|
+ a_z_weighted = self._apply_frequency_weighting(df['a_z_body'], 'Wk', fs) # 垂直方向使用Wk
|
|
|
+
|
|
|
+ # 计算加权均方根值 (r.m.s.)
|
|
|
+ a_x_rms = np.sqrt(np.mean(a_x_weighted**2))
|
|
|
+ a_y_rms = np.sqrt(np.mean(a_y_weighted**2))
|
|
|
+ a_z_rms = np.sqrt(np.mean(a_z_weighted**2))
|
|
|
+
|
|
|
+ # 记录r.m.s.值用于参考
|
|
|
+ self.logger.info(f"X方向加权均方根值: {a_x_rms}")
|
|
|
+ self.logger.info(f"Y方向加权均方根值: {a_y_rms}")
|
|
|
+ self.logger.info(f"Z方向加权均方根值: {a_z_rms}")
|
|
|
+
|
|
|
+ # 计算VDV - 对加速度四次方进行时间积分,再开四次方根
|
|
|
+ # 对于X方向(前后方向)
|
|
|
+ vdv_x = np.power(np.sum(np.power(np.abs(a_x_weighted), 4) * df['time_diff']), 0.25)
|
|
|
+
|
|
|
+ # 对于Y方向(左右方向)
|
|
|
+ vdv_y = np.power(np.sum(np.power(np.abs(a_y_weighted), 4) * df['time_diff']), 0.25)
|
|
|
+
|
|
|
+ # 对于Z方向(上下方向)
|
|
|
+ vdv_z = np.power(np.sum(np.power(np.abs(a_z_weighted), 4) * df['time_diff']), 0.25)
|
|
|
+
|
|
|
+ # 综合VDV - 可以使用向量和或加权和
|
|
|
+ # 根据ISO 2631标准,垂直方向(Z)的权重通常更高
|
|
|
+ vdv = np.sqrt(vdv_x**2 + vdv_y**2 + (1.4 * vdv_z)**2)
|
|
|
+
|
|
|
+ # 记录计算结果
|
|
|
+ self.calculated_value['vdv'] = vdv
|
|
|
+ self.logger.info(f"振动剂量值(VDV)计算结果: {vdv}")
|
|
|
+ self.logger.info(f"X方向VDV: {vdv_x}, Y方向VDV: {vdv_y}, Z方向VDV: {vdv_z}")
|
|
|
+
|
|
|
+ return vdv
|
|
|
+
|
|
|
+ def calculate_motion_sickness_probability(self):
|
|
|
+ """计算基于运动参数的晕车概率模型
|
|
|
+
|
|
|
+ 该模型综合考虑三轴加速度和加加速度(Jerk)对乘客晕车感的影响,
|
|
|
+ 通过非线性指数函数将计算结果映射到0-100%的概率范围。
|
|
|
+
|
|
|
+ 计算公式: P = 100 * [1 - exp(-(α*(ax²+ay²+az²) + β*Jerk_RMS) / γ)]
|
|
|
+
|
|
|
+ 其中:
|
|
|
+ - ax, ay, az: 三轴加速度,表征车辆纵向、横向、垂向运动强度
|
|
|
+ - Jerk_RMS: 加速度变化率的均方根值,反映运动突兀性
|
|
|
+ - α: 加速度权重(默认0.1 s⁴/m²)
|
|
|
+ - β: Jerk权重(默认0.5 s²/m²)
|
|
|
+ - γ: 归一化因子(默认10 m²/s⁴)
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ float: 晕车概率(0-100%)
|
|
|
+ """
|
|
|
+ # 获取数据
|
|
|
+ df = self.ego_df.copy()
|
|
|
+
|
|
|
+ # 确保有必要的列
|
|
|
+ if 'accelX' not in df.columns or 'accelY' not in df.columns:
|
|
|
+ self.logger.warning("缺少计算晕车概率所需的数据列")
|
|
|
+ return self.calculated_value.get('motionSickness', 0)
|
|
|
+
|
|
|
+ # 将东北天坐标系下的加速度转换为车身坐标系下的加速度
|
|
|
+ if 'posH' not in df.columns:
|
|
|
+ self.logger.warning("缺少航向角数据,无法进行坐标转换")
|
|
|
+ return self.calculated_value.get('motionSickness', 0)
|
|
|
+
|
|
|
+ # 车身坐标系:X轴指向车头,Y轴指向车辆左侧,Z轴指向车顶
|
|
|
+ df['posH_rad'] = np.radians(df['posH'])
|
|
|
+
|
|
|
+ # 转换加速度到车身坐标系
|
|
|
+ df['a_x_body'] = df['accelX'] * np.sin(df['posH_rad']) + df['accelY'] * np.cos(df['posH_rad'])
|
|
|
+ df['a_y_body'] = df['accelX'] * np.cos(df['posH_rad']) - df['accelY'] * np.sin(df['posH_rad'])
|
|
|
+
|
|
|
+ # Z方向加速度,如果没有则假设为0
|
|
|
+ df['a_z_body'] = df['accelZ'] if 'accelZ' in df.columns else pd.Series(np.zeros(len(df)))
|
|
|
+
|
|
|
+ # 计算时间差
|
|
|
+ df['time_diff'] = df['simTime'].diff().fillna(0)
|
|
|
+
|
|
|
+ # 应用ISO 2631-1:1997标准的频率加权滤波
|
|
|
+ # 估计采样频率 - 假设数据是均匀采样的
|
|
|
+ if len(df) > 1:
|
|
|
+ time_diff = df['simTime'].diff().median()
|
|
|
+ fs = 1.0 / time_diff if time_diff > 0 else 100 # 默认100Hz
|
|
|
+ else:
|
|
|
+ fs = 100 # 默认采样频率
|
|
|
+
|
|
|
+ # 对各方向加速度应用适当的频率加权
|
|
|
+ a_x_weighted = self._apply_frequency_weighting(df['a_x_body'], 'Wf', fs) # 使用Wf滤波器(晕动相关)
|
|
|
+ a_y_weighted = self._apply_frequency_weighting(df['a_y_body'], 'Wf', fs)
|
|
|
+ a_z_weighted = self._apply_frequency_weighting(df['a_z_body'], 'Wf', fs)
|
|
|
+
|
|
|
+ # 计算加加速度(Jerk) - 加速度的导数
|
|
|
+ # 使用中心差分法计算导数
|
|
|
+ df['jerk_x'] = a_x_weighted.diff() / df['time_diff']
|
|
|
+ df['jerk_y'] = a_y_weighted.diff() / df['time_diff']
|
|
|
+ df['jerk_z'] = a_z_weighted.diff() / df['time_diff']
|
|
|
+
|
|
|
+ # 填充NaN值
|
|
|
+ df[['jerk_x', 'jerk_y', 'jerk_z']] = df[['jerk_x', 'jerk_y', 'jerk_z']].fillna(0)
|
|
|
+
|
|
|
+ # 计算Jerk的均方根值(RMS)
|
|
|
+ jerk_squared_sum = df['jerk_x']**2 + df['jerk_y']**2 + df['jerk_z']**2
|
|
|
+ jerk_rms = np.sqrt(np.mean(jerk_squared_sum))
|
|
|
+
|
|
|
+ # 计算加速度平方和的均值
|
|
|
+ accel_squared_sum = a_x_weighted**2 + a_y_weighted**2 + a_z_weighted**2
|
|
|
+ accel_squared_mean = np.mean(accel_squared_sum)
|
|
|
+
|
|
|
+ # 设置模型参数
|
|
|
+ alpha = 0.1 # 加速度权重(s⁴/m²)
|
|
|
+ beta = 0.5 # Jerk权重(s²/m²)
|
|
|
+ gamma = 10.0 # 归一化因子(m²/s⁴)
|
|
|
+
|
|
|
+ # 计算晕车概率
|
|
|
+ acceleration_term = alpha * accel_squared_mean
|
|
|
+ jerk_term = beta * jerk_rms
|
|
|
+ score = (acceleration_term + jerk_term) / gamma
|
|
|
+ probability = 100 * (1 - np.exp(-score))
|
|
|
+
|
|
|
+ # 限制在0-100%范围内
|
|
|
+ probability = np.clip(probability, 0, 100)
|
|
|
+
|
|
|
+ # 记录计算结果
|
|
|
+ self.calculated_value['motionSickness'] = probability
|
|
|
+ self.logger.info(f"晕车概率(Motion Sickness Probability)计算结果: {probability:.2f}%")
|
|
|
+ self.logger.info(f"加速度平方和均值: {accel_squared_mean:.4f} m²/s⁴, Jerk均方根值: {jerk_rms:.4f} m/s³")
|
|
|
+
|
|
|
+ return probability
|
|
|
+
|
|
|
+ def calculate_motion_comfort_index(self):
|
|
|
+ """计算运动舒适度指数
|
|
|
+
|
|
|
+ 该指数综合考虑加速度、加加速度和角速度对乘客舒适感的影响,
|
|
|
+ 通过加权平均的方式得出一个0-10的舒适度评分,其中10表示最舒适。
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ float: 运动舒适度指数(0-10)
|
|
|
+ """
|
|
|
+ # 获取数据
|
|
|
+ df = self.ego_df.copy()
|
|
|
+
|
|
|
+ # 确保有必要的列
|
|
|
+ if 'accelX' not in df.columns or 'accelY' not in df.columns:
|
|
|
+ self.logger.warning("缺少计算运动舒适度指数所需的数据列")
|
|
|
+ return self.calculated_value.get('motionComfortIndex', 5.0)
|
|
|
+
|
|
|
+ # 计算合成加速度
|
|
|
+ df['accel_magnitude'] = np.sqrt(df['accelX']**2 + df['accelY']**2)
|
|
|
+ if 'accelZ' in df.columns:
|
|
|
+ df['accel_magnitude'] = np.sqrt(df['accel_magnitude']**2 + df['accelZ']**2)
|
|
|
+
|
|
|
+ # 计算加加速度(Jerk)
|
|
|
+ df['time_diff'] = df['simTime'].diff().fillna(0.01)
|
|
|
+ df['jerk_x'] = df['accelX'].diff() / df['time_diff']
|
|
|
+ df['jerk_y'] = df['accelY'].diff() / df['time_diff']
|
|
|
+ df['jerk_magnitude'] = np.sqrt(df['jerk_x']**2 + df['jerk_y']**2)
|
|
|
+ if 'accelZ' in df.columns:
|
|
|
+ df['jerk_z'] = df['accelZ'].diff() / df['time_diff']
|
|
|
+ df['jerk_magnitude'] = np.sqrt(df['jerk_magnitude']**2 + df['jerk_z']**2)
|
|
|
+
|
|
|
+ # 计算角速度
|
|
|
+ if 'rollRate' in df.columns and 'pitchRate' in df.columns:
|
|
|
+ df['angular_velocity'] = np.sqrt(df['rollRate']**2 + df['pitchRate']**2)
|
|
|
+ if 'speedH' in df.columns: # 使用航向角速度作为偏航角速度
|
|
|
+ df['angular_velocity'] = np.sqrt(df['angular_velocity']**2 + df['speedH']**2)
|
|
|
+ else:
|
|
|
+ df['angular_velocity'] = 0
|
|
|
+
|
|
|
+ # 计算各指标的均方根值
|
|
|
+ accel_rms = np.sqrt(np.mean(df['accel_magnitude']**2))
|
|
|
+ jerk_rms = np.sqrt(np.mean(df['jerk_magnitude']**2))
|
|
|
+ angular_rms = np.sqrt(np.mean(df['angular_velocity']**2))
|
|
|
+
|
|
|
+ # 设置阈值和权重
|
|
|
+ accel_threshold = 2.0 # m/s²,超过此值舒适度开始下降
|
|
|
+ jerk_threshold = 1.0 # m/s³,超过此值舒适度开始下降
|
|
|
+ angular_threshold = 0.2 # rad/s,超过此值舒适度开始下降
|
|
|
+
|
|
|
+ accel_weight = 0.5 # 加速度权重
|
|
|
+ jerk_weight = 0.3 # 加加速度权重
|
|
|
+ angular_weight = 0.2 # 角速度权重
|
|
|
+
|
|
|
+ # 计算各分量的舒适度得分(0-10)
|
|
|
+ accel_score = 10 * np.exp(-max(0, accel_rms - accel_threshold) / accel_threshold)
|
|
|
+ jerk_score = 10 * np.exp(-max(0, jerk_rms - jerk_threshold) / jerk_threshold)
|
|
|
+ angular_score = 10 * np.exp(-max(0, angular_rms - angular_threshold) / angular_threshold)
|
|
|
+
|
|
|
+ # 计算加权平均得分
|
|
|
+ comfort_index = (accel_weight * accel_score +
|
|
|
+ jerk_weight * jerk_score +
|
|
|
+ angular_weight * angular_score)
|
|
|
+
|
|
|
+ # 限制在0-10范围内
|
|
|
+ comfort_index = np.clip(comfort_index, 0, 10)
|
|
|
+
|
|
|
+ # 记录计算结果
|
|
|
+ self.calculated_value['motionComfortIndex'] = comfort_index
|
|
|
+ self.logger.info(f"运动舒适度指数(Motion Comfort Index)计算结果: {comfort_index:.2f}/10")
|
|
|
+ self.logger.info(f"加速度RMS: {accel_rms:.4f} m/s², 加加速度RMS: {jerk_rms:.4f} m/s³, 角速度RMS: {angular_rms:.4f} rad/s")
|
|
|
+
|
|
|
+ return comfort_index
|
|
|
+
|
|
|
+ def calculate_ride_quality_score(self):
|
|
|
+ """计算乘坐质量评分
|
|
|
+
|
|
|
+ 该评分基于ISO 2631标准,综合考虑振动频率、振幅和持续时间对人体的影响,
|
|
|
+ 评估车辆在不同路况下的乘坐舒适性。
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ float: 乘坐质量评分(0-100)
|
|
|
+ """
|
|
|
+ # 获取数据
|
|
|
+ df = self.ego_df.copy()
|
|
|
+
|
|
|
+ # 确保有必要的列
|
|
|
+ if 'accelZ' not in df.columns:
|
|
|
+ self.logger.warning("缺少计算乘坐质量评分所需的垂直加速度数据")
|
|
|
+ return self.calculated_value.get('rideQualityScore', 70.0)
|
|
|
+
|
|
|
+ # 估计采样频率
|
|
|
+ if len(df) > 1:
|
|
|
+ time_diff = df['simTime'].diff().median()
|
|
|
+ fs = 1.0 / time_diff if time_diff > 0 else 100 # 默认100Hz
|
|
|
+ else:
|
|
|
+ fs = 100 # 默认采样频率
|
|
|
+
|
|
|
+ # 应用ISO 2631-1:1997标准的频率加权滤波
|
|
|
+ a_z_weighted = self._apply_frequency_weighting(df['accelZ'], 'Wk', fs)
|
|
|
+
|
|
|
+ # 计算垂直方向加速度的均方根值
|
|
|
+ a_z_rms = np.sqrt(np.mean(a_z_weighted**2))
|
|
|
+
|
|
|
+ # 根据ISO 2631-1:1997标准的舒适度评价
|
|
|
+ # < 0.315 m/s² - 不感到不适
|
|
|
+ # 0.315-0.63 m/s² - 轻微不适
|
|
|
+ # 0.5-1.0 m/s² - 有些不适
|
|
|
+ # 0.8-1.6 m/s² - 不适
|
|
|
+ # 1.25-2.5 m/s² - 非常不适
|
|
|
+ # > 2.0 m/s² - 极度不适
|
|
|
+
|
|
|
+ # 将RMS值映射到0-100的评分
|
|
|
+ if a_z_rms < 0.315:
|
|
|
+ base_score = 90
|
|
|
+ elif a_z_rms < 0.63:
|
|
|
+ base_score = 80
|
|
|
+ elif a_z_rms < 1.0:
|
|
|
+ base_score = 70
|
|
|
+ elif a_z_rms < 1.6:
|
|
|
+ base_score = 60
|
|
|
+ elif a_z_rms < 2.5:
|
|
|
+ base_score = 40
|
|
|
+ else:
|
|
|
+ base_score = 20
|
|
|
+
|
|
|
+ # 考虑振动持续时间的影响
|
|
|
+ duration_factor = min(1.0, 10.0 / (df['simTime'].max() - df['simTime'].min()))
|
|
|
+
|
|
|
+ # 考虑振动频率分布的影响
|
|
|
+ # 计算功率谱密度
|
|
|
+ if len(a_z_weighted) > 50: # 确保有足够的数据点进行频谱分析
|
|
|
+ f, psd = self._calculate_psd(a_z_weighted, fs)
|
|
|
+
|
|
|
+ # 计算人体敏感频率范围(4-8Hz)的能量占比
|
|
|
+ sensitive_mask = (f >= 4) & (f <= 8)
|
|
|
+ sensitive_energy = np.sum(psd[sensitive_mask])
|
|
|
+ total_energy = np.sum(psd)
|
|
|
+
|
|
|
+ frequency_factor = 1.0 - 0.3 * (sensitive_energy / total_energy if total_energy > 0 else 0)
|
|
|
+ else:
|
|
|
+ frequency_factor = 1.0
|
|
|
+
|
|
|
+ # 计算最终评分
|
|
|
+ ride_quality_score = base_score * duration_factor * frequency_factor
|
|
|
+
|
|
|
+ # 限制在0-100范围内
|
|
|
+ ride_quality_score = np.clip(ride_quality_score, 0, 100)
|
|
|
+
|
|
|
+ # 记录计算结果
|
|
|
+ self.calculated_value['rideQualityScore'] = ride_quality_score
|
|
|
+ self.logger.info(f"乘坐质量评分(Ride Quality Score)计算结果: {ride_quality_score:.2f}/100")
|
|
|
+ self.logger.info(f"垂直加速度RMS: {a_z_rms:.4f} m/s²")
|
|
|
+
|
|
|
+ return ride_quality_score
|
|
|
+
|
|
|
+ def _calculate_psd(self, signal, fs):
|
|
|
+ """计算信号的功率谱密度
|
|
|
+
|
|
|
+ Args:
|
|
|
+ signal: 输入信号
|
|
|
+ fs: 采样频率
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ tuple: 频率和对应的功率谱密度
|
|
|
+ """
|
|
|
+ # 使用Welch方法计算PSD
|
|
|
+ from scipy import signal as sp_signal
|
|
|
+ f, psd = sp_signal.welch(signal, fs, nperseg=min(256, len(signal)//2))
|
|
|
+ return f, psd
|
|
|
+
|
|
|
+ def calculate_ava_vav(self):
|
|
|
+ """计算多维度综合加权加速度
|
|
|
+
|
|
|
+ 基于ISO 2631-1:1997标准,综合考虑车辆在三个平移方向和三个旋转方向的加速度或角速度
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ float: 多维度综合加权加速度值
|
|
|
+ """
|
|
|
+ # 定义各方向的权重系数
|
|
|
+ k_x = 1.0 # X方向加速度权重
|
|
|
+ k_y = 1.0 # Y方向加速度权重
|
|
|
+ k_z = 1.0 # Z方向加速度权重
|
|
|
+ k_roll = 0.63 # 横滚角速度权重
|
|
|
+ k_pitch = 0.8 # 俯仰角速度权重
|
|
|
+ k_yaw = 0.5 # 偏航角速度权重
|
|
|
+
|
|
|
+ # 获取数据
|
|
|
+ df = self.ego_df.copy()
|
|
|
+
|
|
|
+ # 确保有必要的列
|
|
|
+ if 'accelX' not in df.columns or 'accelY' not in df.columns:
|
|
|
+ self.logger.warning("缺少计算多维度综合加权加速度所需的数据列")
|
|
|
+ return self.calculated_value['ava_vav']
|
|
|
+
|
|
|
+ # 将东北天坐标系下的加速度转换为车身坐标系下的加速度
|
|
|
+ # 车身坐标系:X轴指向车头,Y轴指向车辆左侧,Z轴指向车顶
|
|
|
+ if 'posH' not in df.columns:
|
|
|
+ self.logger.warning("缺少航向角数据,无法进行坐标转换")
|
|
|
+ return self.calculated_value['ava_vav']
|
|
|
+
|
|
|
+ df['posH_rad'] = np.radians(df['posH'])
|
|
|
+
|
|
|
+ # 转换加速度到车身坐标系
|
|
|
+ # 注意:posH是航向角,北向为0度,顺时针为正
|
|
|
+ # 车身X轴 = 东向*sin(posH) + 北向*cos(posH)
|
|
|
+ # 车身Y轴 = 东向*cos(posH) - 北向*sin(posH)
|
|
|
+ df['a_x_body'] = df['accelX'] * np.sin(df['posH_rad']) + df['accelY'] * np.cos(df['posH_rad'])
|
|
|
+ df['a_y_body'] = df['accelX'] * np.cos(df['posH_rad']) - df['accelY'] * np.sin(df['posH_rad'])
|
|
|
+
|
|
|
+ # Z方向加速度,如果没有则假设为0
|
|
|
+ df['a_z_body'] = df['accelZ'] if 'accelZ' in df.columns else pd.Series(np.zeros(len(df)))
|
|
|
+
|
|
|
+ # 角速度数据,如果没有则使用角速度变化率代替
|
|
|
+ # 注意:speedH是航向角速度,需要转换为车身坐标系下的偏航角速度
|
|
|
+ omega_roll = df['rollRate'] if 'rollRate' in df.columns else pd.Series(np.zeros(len(df)))
|
|
|
+ omega_pitch = df['pitchRate'] if 'pitchRate' in df.columns else pd.Series(np.zeros(len(df)))
|
|
|
+ omega_yaw = df['speedH'] # 使用航向角速度作为偏航角速度
|
|
|
+
|
|
|
+ # 应用ISO 2631-1:1997标准的频率加权滤波
|
|
|
+ # 估计采样频率 - 假设数据是均匀采样的
|
|
|
+ if len(df) > 1:
|
|
|
+ time_diff = df['simTime'].diff().median()
|
|
|
+ fs = 1.0 / time_diff if time_diff > 0 else 100 # 默认100Hz
|
|
|
+ else:
|
|
|
+ fs = 100 # 默认采样频率
|
|
|
+
|
|
|
+ # 对各方向加速度应用适当的频率加权
|
|
|
+ a_x_weighted = self._apply_frequency_weighting(df['a_x_body'], 'Wd', fs)
|
|
|
+ a_y_weighted = self._apply_frequency_weighting(df['a_y_body'], 'Wd', fs)
|
|
|
+ a_z_weighted = self._apply_frequency_weighting(df['a_z_body'], 'Wk', fs)
|
|
|
+
|
|
|
+ # 对角速度也应用适当的频率加权
|
|
|
+ # 注意:ISO标准没有直接指定角速度的加权,这里使用简化处理
|
|
|
+ omega_roll_weighted = omega_roll # 可以根据需要应用适当的滤波
|
|
|
+ omega_pitch_weighted = omega_pitch
|
|
|
+ omega_yaw_weighted = omega_yaw
|
|
|
+
|
|
|
+ # 计算加权均方根值 (r.m.s.)
|
|
|
+ # 对每个方向的加速度/角速度平方后求平均,再开平方根
|
|
|
+ a_x_rms = np.sqrt(np.mean(a_x_weighted**2))
|
|
|
+ a_y_rms = np.sqrt(np.mean(a_y_weighted**2))
|
|
|
+ a_z_rms = np.sqrt(np.mean(a_z_weighted**2))
|
|
|
+ omega_roll_rms = np.sqrt(np.mean(omega_roll_weighted**2))
|
|
|
+ omega_pitch_rms = np.sqrt(np.mean(omega_pitch_weighted**2))
|
|
|
+ omega_yaw_rms = np.sqrt(np.mean(omega_yaw_weighted**2))
|
|
|
+
|
|
|
+ # 计算综合加权加速度
|
|
|
+ ava_vav = np.sqrt(
|
|
|
+ k_x * a_x_rms**2 +
|
|
|
+ k_y * a_y_rms**2 +
|
|
|
+ k_z * a_z_rms**2 +
|
|
|
+ k_roll * omega_roll_rms**2 +
|
|
|
+ k_pitch * omega_pitch_rms**2 +
|
|
|
+ k_yaw * omega_yaw_rms**2
|
|
|
+ )
|
|
|
+
|
|
|
+ # 记录计算结果
|
|
|
+ self.calculated_value['ava_vav'] = ava_vav
|
|
|
+ self.logger.info(f"多维度综合加权加速度(ava_vav)计算结果: {ava_vav}")
|
|
|
+
|
|
|
+ return ava_vav
|
|
|
+
|
|
|
+ def calculate_msdv(self):
|
|
|
+ """计算晕动剂量值(Motion Sickness Dose Value, MSDV)
|
|
|
+
|
|
|
+ MSDV用于量化乘员因持续振动而产生的晕动风险,其物理意义是
|
|
|
+ "频率加权后的加速度有效值的平方对时间的累积",
|
|
|
+ 能够反映乘员在一定时间内受到振动刺激的总量。
|
|
|
+
|
|
|
+ 计算公式: MSDV = √(∫[0,T] a_ω(t)² dt)
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ float: 晕动剂量值
|
|
|
+ """
|
|
|
+ # 获取数据
|
|
|
+ df = self.ego_df.copy()
|
|
|
+
|
|
|
+ # 确保有必要的列
|
|
|
+ if 'accelX' not in df.columns or 'accelY' not in df.columns:
|
|
|
+ self.logger.warning("缺少计算晕动剂量值所需的数据列")
|
|
|
+ return self.calculated_value['msdv']
|
|
|
+
|
|
|
+ # 将东北天坐标系下的加速度转换为车身坐标系下的加速度
|
|
|
+ if 'posH' not in df.columns:
|
|
|
+ self.logger.warning("缺少航向角数据,无法进行坐标转换")
|
|
|
+ return self.calculated_value['msdv']
|
|
|
+
|
|
|
+ # 车身坐标系:X轴指向车头,Y轴指向车辆左侧,Z轴指向车顶
|
|
|
+ df['posH_rad'] = np.radians(df['posH'])
|
|
|
+
|
|
|
+ # 转换加速度到车身坐标系
|
|
|
+ # 注意:posH是航向角,北向为0度,顺时针为正
|
|
|
+ # 车身X轴 = 东向*sin(posH) + 北向*cos(posH)
|
|
|
+ # 车身Y轴 = 东向*cos(posH) - 北向*sin(posH)
|
|
|
+ df['a_x_body'] = df['accelX'] * np.sin(df['posH_rad']) + df['accelY'] * np.cos(df['posH_rad'])
|
|
|
+ df['a_y_body'] = df['accelX'] * np.cos(df['posH_rad']) - df['accelY'] * np.sin(df['posH_rad'])
|
|
|
+
|
|
|
+ # Z方向加速度,如果没有则假设为0
|
|
|
+ df['a_z_body'] = df['accelZ'] if 'accelZ' in df.columns else pd.Series(np.zeros(len(df)))
|
|
|
+
|
|
|
+ # 计算时间差
|
|
|
+ df['time_diff'] = df['simTime'].diff().fillna(0)
|
|
|
+ total_time = df['time_diff'].sum()
|
|
|
+
|
|
|
+ # 应用ISO 2631-1:1997标准的频率加权滤波
|
|
|
+ # 估计采样频率 - 假设数据是均匀采样的
|
|
|
+ if len(df) > 1:
|
|
|
+ time_diff = df['simTime'].diff().median()
|
|
|
+ fs = 1.0 / time_diff if time_diff > 0 else 100 # 默认100Hz
|
|
|
+ else:
|
|
|
+ fs = 100 # 默认采样频率
|
|
|
+
|
|
|
+ # 对各方向加速度应用适当的频率加权
|
|
|
+ # 对于晕动评估,使用Wf加权滤波器
|
|
|
+ a_x_weighted = self._apply_frequency_weighting(df['a_x_body'], 'Wf', fs)
|
|
|
+ a_y_weighted = self._apply_frequency_weighting(df['a_y_body'], 'Wf', fs)
|
|
|
+ a_z_weighted = self._apply_frequency_weighting(df['a_z_body'], 'Wf', fs)
|
|
|
+
|
|
|
+ # 先计算加权均方根值 (r.m.s.)
|
|
|
+ a_x_rms = np.sqrt(np.sum(a_x_weighted**2 * df['time_diff']) / total_time)
|
|
|
+ a_y_rms = np.sqrt(np.sum(a_y_weighted**2 * df['time_diff']) / total_time)
|
|
|
+ a_z_rms = np.sqrt(np.sum(a_z_weighted**2 * df['time_diff']) / total_time)
|
|
|
+
|
|
|
+ # 记录r.m.s.值用于参考
|
|
|
+ self.logger.info(f"X方向加权均方根值: {a_x_rms}")
|
|
|
+ self.logger.info(f"Y方向加权均方根值: {a_y_rms}")
|
|
|
+ self.logger.info(f"Z方向加权均方根值: {a_z_rms}")
|
|
|
+
|
|
|
+ # 计算MSDV - 基于r.m.s.值和总时间
|
|
|
+ msdv_x = a_x_rms * np.sqrt(total_time)
|
|
|
+ msdv_y = a_y_rms * np.sqrt(total_time)
|
|
|
+ msdv_z = a_z_rms * np.sqrt(total_time)
|
|
|
+
|
|
|
+ # 综合MSDV - 可以使用向量和或加权和
|
|
|
+ # 根据ISO 2631标准,垂直方向(Z)的权重通常更高
|
|
|
+ msdv = np.sqrt(msdv_x**2 + msdv_y**2 + (1.4 * msdv_z)**2)
|
|
|
+
|
|
|
+ # 记录计算结果
|
|
|
+ self.calculated_value['msdv'] = msdv
|
|
|
+ self.logger.info(f"晕动剂量值(MSDV)计算结果: {msdv}")
|
|
|
+ self.logger.info(f"X方向MSDV: {msdv_x}, Y方向MSDV: {msdv_y}, Z方向MSDV: {msdv_z}")
|
|
|
+
|
|
|
+ return msdv
|
|
|
|
|
|
def _cal_cur_ego_path(self, row):
|
|
|
"""计算车辆轨迹曲率"""
|
|
@@ -312,294 +972,339 @@ class ComfortCalculator:
|
|
|
self._slam_accel_detector()
|
|
|
return self.slam_accel_count
|
|
|
|
|
|
- def _shake_detector(self, T_diff=0.5):
|
|
|
- """检测晃动事件 - 改进版本(不使用车辆轨迹曲率)"""
|
|
|
- # lat_acc已经是车辆坐标系下的横向加速度,由data_process.py计算
|
|
|
- time_list = []
|
|
|
- frame_list = []
|
|
|
-
|
|
|
- # 复制数据以避免修改原始数据
|
|
|
+ def _shake_detector(self):
|
|
|
+ """检测晃动事件"""
|
|
|
+ # 获取数据
|
|
|
df = self.ego_df.copy()
|
|
|
|
|
|
- # 1. 计算横向加速度变化率
|
|
|
- df['lat_acc_rate'] = df['lat_acc'].diff() / df['simTime'].diff()
|
|
|
-
|
|
|
- # 2. 计算横摆角速度变化率
|
|
|
- df['speedH_rate'] = df['speedH'].diff() / df['simTime'].diff()
|
|
|
-
|
|
|
- # 3. 计算横摆角速度的短期变化特性
|
|
|
- window_size = 5 # 5帧窗口
|
|
|
- df['speedH_std'] = df['speedH'].rolling(window=window_size, min_periods=2).std()
|
|
|
-
|
|
|
- # 4. 基于车速的动态阈值
|
|
|
- v0 = 20 * 5/18 # ≈5.56 m/s
|
|
|
- # 递减系数
|
|
|
- k = 0.008 * 3.6 # =0.0288 per m/s
|
|
|
- df['lat_acc_threshold'] = df['v'].apply(
|
|
|
- lambda speed: max(
|
|
|
- 1.0, # 下限 1.0 m/s²
|
|
|
- min(
|
|
|
- 1.8, # 上限 1.8 m/s²
|
|
|
- 1.8 - k * (speed - v0) # 线性递减
|
|
|
- )
|
|
|
- )
|
|
|
- )
|
|
|
-
|
|
|
- df['speedH_threshold'] = df['v'].apply(
|
|
|
- lambda speed: max(1.5, min(3.0, 2.0 * (1 + (speed - 20) / 60)))
|
|
|
- )
|
|
|
- # 将计算好的阈值和中间变量保存到self.ego_df中,供其他函数使用
|
|
|
- self.ego_df['lat_acc_threshold'] = df['lat_acc_threshold']
|
|
|
- self.ego_df['speedH_threshold'] = df['speedH_threshold']
|
|
|
- self.ego_df['lat_acc_rate'] = df['lat_acc_rate']
|
|
|
- self.ego_df['speedH_rate'] = df['speedH_rate']
|
|
|
- self.ego_df['speedH_std'] = df['speedH_std']
|
|
|
-
|
|
|
- # 5. 综合判断晃动条件
|
|
|
- # 条件A: 横向加速度超过阈值
|
|
|
- condition_A = df['lat_acc'].abs() > df['lat_acc_threshold']
|
|
|
-
|
|
|
- # 条件B: 横向加速度变化率超过阈值
|
|
|
- lat_acc_rate_threshold = 0.5 # 横向加速度变化率阈值 (m/s³)
|
|
|
- condition_B = df['lat_acc_rate'].abs() > lat_acc_rate_threshold
|
|
|
-
|
|
|
- # 条件C: 横摆角速度有明显变化但不呈现周期性
|
|
|
- condition_C = (df['speedH_std'] > df['speedH_threshold']) & (~df['simTime'].isin(self._get_zigzag_times()))
|
|
|
-
|
|
|
- # 综合条件: 满足条件A,且满足条件B或条件C
|
|
|
- shake_condition = condition_A & (condition_B | condition_C)
|
|
|
-
|
|
|
- # 筛选满足条件的数据
|
|
|
- shake_df = df[shake_condition].copy()
|
|
|
-
|
|
|
- # 按照连续帧号分组,确保只有连续帧超过阈值的才被认为是晃动
|
|
|
- if not shake_df.empty:
|
|
|
- shake_df['frame_diff'] = shake_df['simFrame'].diff().fillna(0)
|
|
|
- shake_df['group'] = (shake_df['frame_diff'] > T_diff).cumsum()
|
|
|
+ # 检查是否有必要的列
|
|
|
+ if 'lat_acc' not in df.columns:
|
|
|
+ self.logger.warning("缺少计算晃动指标所需的数据列")
|
|
|
+ return
|
|
|
|
|
|
- # 分组统计
|
|
|
- shake_groups = shake_df.groupby('group')
|
|
|
+ # 设置晃动检测阈值
|
|
|
+ shake_threshold = 1.5 # 横向加速度阈值 m/s²
|
|
|
+ min_duration = 0.5 # 最小持续时间 秒
|
|
|
+
|
|
|
+ # 标记超过阈值的点
|
|
|
+ df['shake_flag'] = (abs(df['lat_acc']) > shake_threshold).astype(int)
|
|
|
+
|
|
|
+ # 检测连续的晃动事件
|
|
|
+ shake_events = []
|
|
|
+ in_event = False
|
|
|
+ start_idx = 0
|
|
|
+
|
|
|
+ for i, row in df.iterrows():
|
|
|
+ if row['shake_flag'] == 1 and not in_event:
|
|
|
+ # 开始新的晃动事件
|
|
|
+ in_event = True
|
|
|
+ start_idx = i
|
|
|
+ elif row['shake_flag'] == 0 and in_event:
|
|
|
+ # 结束当前晃动事件
|
|
|
+ in_event = False
|
|
|
+ end_idx = i - 1
|
|
|
+
|
|
|
+ # 计算事件持续时间
|
|
|
+ start_time = df.loc[start_idx, 'simTime']
|
|
|
+ end_time = df.loc[end_idx, 'simTime']
|
|
|
+ duration = end_time - start_time
|
|
|
+
|
|
|
+ # 如果持续时间超过阈值,记录为有效晃动事件
|
|
|
+ if duration >= min_duration:
|
|
|
+ shake_events.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'duration': duration,
|
|
|
+ 'max_lat_acc': df.loc[start_idx:end_idx, 'lat_acc'].abs().max()
|
|
|
+ })
|
|
|
+
|
|
|
+ # 添加到不舒适事件表
|
|
|
+ self.discomfort_df = self.discomfort_df.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'type': 'shake'
|
|
|
+ }, ignore_index=True)
|
|
|
+
|
|
|
+ # 如果最后一个事件没有结束,检查它
|
|
|
+ if in_event:
|
|
|
+ end_idx = len(df) - 1
|
|
|
+ start_time = df.loc[start_idx, 'simTime']
|
|
|
+ end_time = df.loc[end_idx, 'simTime']
|
|
|
+ duration = end_time - start_time
|
|
|
|
|
|
- for _, group in shake_groups:
|
|
|
- if len(group) >= 2: # 至少2帧才算一次晃动
|
|
|
- time_list.extend(group['simTime'].values)
|
|
|
- frame_list.extend(group['simFrame'].values)
|
|
|
- self.shake_count += 1
|
|
|
-
|
|
|
- # 分组处理
|
|
|
- TIME_RANGE = 1
|
|
|
- t_list = time_list
|
|
|
- f_list = frame_list
|
|
|
- group_time = []
|
|
|
- group_frame = []
|
|
|
- sub_group_time = []
|
|
|
- sub_group_frame = []
|
|
|
-
|
|
|
- if len(f_list) > 0:
|
|
|
- for i in range(len(f_list)):
|
|
|
- if not sub_group_time or t_list[i] - t_list[i - 1] <= TIME_RANGE:
|
|
|
- sub_group_time.append(t_list[i])
|
|
|
- sub_group_frame.append(f_list[i])
|
|
|
- else:
|
|
|
- group_time.append(sub_group_time)
|
|
|
- group_frame.append(sub_group_frame)
|
|
|
- sub_group_time = [t_list[i]]
|
|
|
- sub_group_frame = [f_list[i]]
|
|
|
-
|
|
|
- group_time.append(sub_group_time)
|
|
|
- group_frame.append(sub_group_frame)
|
|
|
-
|
|
|
- # 输出图表值
|
|
|
- shake_time = [[g[0], g[-1]] for g in group_time]
|
|
|
- shake_frame = [[g[0], g[-1]] for g in group_frame]
|
|
|
- self.shake_count = len(shake_time)
|
|
|
-
|
|
|
- if shake_time:
|
|
|
- time_df = pd.DataFrame(shake_time, columns=['start_time', 'end_time'])
|
|
|
- frame_df = pd.DataFrame(shake_frame, columns=['start_frame', 'end_frame'])
|
|
|
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
|
|
|
- discomfort_df['type'] = 'shake'
|
|
|
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
|
|
|
-
|
|
|
- return time_list
|
|
|
+ if duration >= min_duration:
|
|
|
+ shake_events.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'duration': duration,
|
|
|
+ 'max_lat_acc': df.loc[start_idx:end_idx, 'lat_acc'].abs().max()
|
|
|
+ })
|
|
|
+
|
|
|
+ # 添加到不舒适事件表
|
|
|
+ self.discomfort_df = self.discomfort_df.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'type': 'shake'
|
|
|
+ }, ignore_index=True)
|
|
|
+
|
|
|
+ # 更新晃动计数
|
|
|
+ self.shake_count = len(shake_events)
|
|
|
+ self.logger.info(f"检测到 {self.shake_count} 次晃动事件")
|
|
|
|
|
|
def _cadence_detector(self):
|
|
|
- """顿挫检测器"""
|
|
|
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'lon_acc_roc', 'cadence']].copy()
|
|
|
- time_list = data['simTime'].values.tolist()
|
|
|
-
|
|
|
- data = data[data['cadence'] != np.nan]
|
|
|
- data['cadence_diff'] = data['cadence'].diff()
|
|
|
- data.dropna(subset='cadence_diff', inplace=True)
|
|
|
- data = data[data['cadence_diff'] != 0]
|
|
|
-
|
|
|
- t_list = data['simTime'].values.tolist()
|
|
|
- f_list = data['simFrame'].values.tolist()
|
|
|
-
|
|
|
- TIME_RANGE = 1
|
|
|
- group_time = []
|
|
|
- group_frame = []
|
|
|
- sub_group_time = []
|
|
|
- sub_group_frame = []
|
|
|
- for i in range(len(f_list)):
|
|
|
- if not sub_group_time or t_list[i] - t_list[i - 1] <= TIME_RANGE: # 特征点相邻一秒内的,算作同一组顿挫
|
|
|
- sub_group_time.append(t_list[i])
|
|
|
- sub_group_frame.append(f_list[i])
|
|
|
- else:
|
|
|
- group_time.append(sub_group_time)
|
|
|
- group_frame.append(sub_group_frame)
|
|
|
- sub_group_time = [t_list[i]]
|
|
|
- sub_group_frame = [f_list[i]]
|
|
|
-
|
|
|
- group_time.append(sub_group_time)
|
|
|
- group_frame.append(sub_group_frame)
|
|
|
- group_time = [g for g in group_time if len(g) >= 1] # 有一次特征点则算作一次顿挫
|
|
|
- group_frame = [g for g in group_frame if len(g) >= 1]
|
|
|
-
|
|
|
- # 输出图表值
|
|
|
- cadence_time = [[g[0], g[-1]] for g in group_time]
|
|
|
- cadence_frame = [[g[0], g[-1]] for g in group_frame]
|
|
|
-
|
|
|
- if cadence_time:
|
|
|
- time_df = pd.DataFrame(cadence_time, columns=['start_time', 'end_time'])
|
|
|
- frame_df = pd.DataFrame(cadence_frame, columns=['start_frame', 'end_frame'])
|
|
|
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
|
|
|
- discomfort_df['type'] = 'cadence'
|
|
|
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
|
|
|
-
|
|
|
- # 将顿挫组的起始时间为组重新统计时间
|
|
|
- cadence_time_list = [time for pair in cadence_time for time in time_list if pair[0] <= time <= pair[1]]
|
|
|
-
|
|
|
- stre_list = []
|
|
|
- freq_list = []
|
|
|
- for g in group_time:
|
|
|
- # calculate strength
|
|
|
- g_df = data[data['simTime'].isin(g)]
|
|
|
- strength = g_df['lon_acc'].abs().mean()
|
|
|
- stre_list.append(strength)
|
|
|
-
|
|
|
- # calculate frequency
|
|
|
- cnt = len(g)
|
|
|
- t_start = g_df['simTime'].iloc[0]
|
|
|
- t_end = g_df['simTime'].iloc[-1]
|
|
|
- t_delta = t_end - t_start
|
|
|
- frequency = cnt / t_delta
|
|
|
- freq_list.append(frequency)
|
|
|
-
|
|
|
- self.cadence_count = len(freq_list)
|
|
|
- cadence_stre = sum(stre_list) / len(stre_list) if stre_list else 0
|
|
|
-
|
|
|
- return cadence_time_list
|
|
|
+ """检测顿挫事件"""
|
|
|
+ # 获取数据
|
|
|
+ df = self.ego_df.copy()
|
|
|
+
|
|
|
+ # 检查是否有必要的列
|
|
|
+ if 'cadence' not in df.columns:
|
|
|
+ self.logger.warning("缺少计算顿挫指标所需的数据列")
|
|
|
+ return
|
|
|
+
|
|
|
+ # 设置顿挫检测参数
|
|
|
+ min_duration = 0.3 # 最小持续时间 秒
|
|
|
+
|
|
|
+ # 检测连续的顿挫事件
|
|
|
+ cadence_events = []
|
|
|
+ in_event = False
|
|
|
+ start_idx = 0
|
|
|
+
|
|
|
+ for i, row in df.iterrows():
|
|
|
+ if not pd.isna(row['cadence']) and not in_event:
|
|
|
+ # 开始新的顿挫事件
|
|
|
+ in_event = True
|
|
|
+ start_idx = i
|
|
|
+ current_direction = np.sign(row['cadence'])
|
|
|
+ elif (pd.isna(row['cadence']) or np.sign(row['cadence']) != current_direction) and in_event:
|
|
|
+ # 结束当前顿挫事件
|
|
|
+ in_event = False
|
|
|
+ end_idx = i - 1
|
|
|
+
|
|
|
+ # 计算事件持续时间
|
|
|
+ start_time = df.loc[start_idx, 'simTime']
|
|
|
+ end_time = df.loc[end_idx, 'simTime']
|
|
|
+ duration = end_time - start_time
|
|
|
+
|
|
|
+ # 如果持续时间超过阈值,记录为有效顿挫事件
|
|
|
+ if duration >= min_duration:
|
|
|
+ cadence_events.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'duration': duration,
|
|
|
+ 'direction': 'acceleration' if current_direction > 0 else 'deceleration'
|
|
|
+ })
|
|
|
+
|
|
|
+ # 添加到不舒适事件表
|
|
|
+ self.discomfort_df = self.discomfort_df.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'type': 'cadence'
|
|
|
+ }, ignore_index=True)
|
|
|
+
|
|
|
+ # 如果最后一个事件没有结束,检查它
|
|
|
+ if in_event:
|
|
|
+ end_idx = len(df) - 1
|
|
|
+ start_time = df.loc[start_idx, 'simTime']
|
|
|
+ end_time = df.loc[end_idx, 'simTime']
|
|
|
+ duration = end_time - start_time
|
|
|
+
|
|
|
+ if duration >= min_duration:
|
|
|
+ cadence_events.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'duration': duration,
|
|
|
+ 'direction': 'acceleration' if current_direction > 0 else 'deceleration'
|
|
|
+ })
|
|
|
+
|
|
|
+ # 添加到不舒适事件表
|
|
|
+ self.discomfort_df = self.discomfort_df.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'type': 'cadence'
|
|
|
+ }, ignore_index=True)
|
|
|
+
|
|
|
+ # 更新顿挫计数
|
|
|
+ self.cadence_count = len(cadence_events)
|
|
|
+ self.logger.info(f"检测到 {self.cadence_count} 次顿挫事件")
|
|
|
|
|
|
def _slam_brake_detector(self):
|
|
|
- """急刹车检测器"""
|
|
|
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'lon_acc_roc', 'ip_dec', 'slam_brake']].copy()
|
|
|
- res_df = data[data['slam_brake'] == 1]
|
|
|
- t_list = res_df['simTime'].values
|
|
|
- f_list = res_df['simFrame'].values.tolist()
|
|
|
-
|
|
|
- TIME_RANGE = 1
|
|
|
- group_time = []
|
|
|
- group_frame = []
|
|
|
- sub_group_time = []
|
|
|
- sub_group_frame = []
|
|
|
- for i in range(len(f_list)):
|
|
|
- if not sub_group_time or f_list[i] - f_list[i - 1] <= TIME_RANGE: # 连续帧的算作同一组急刹
|
|
|
- sub_group_time.append(t_list[i])
|
|
|
- sub_group_frame.append(f_list[i])
|
|
|
- else:
|
|
|
- group_time.append(sub_group_time)
|
|
|
- group_frame.append(sub_group_frame)
|
|
|
- sub_group_time = [t_list[i]]
|
|
|
- sub_group_frame = [f_list[i]]
|
|
|
-
|
|
|
- group_time.append(sub_group_time)
|
|
|
- group_frame.append(sub_group_frame)
|
|
|
- group_time = [g for g in group_time if len(g) >= 2] # 达到两帧算作一次急刹
|
|
|
- group_frame = [g for g in group_frame if len(g) >= 2]
|
|
|
-
|
|
|
- # 输出图表值
|
|
|
- slam_brake_time = [[g[0], g[-1]] for g in group_time]
|
|
|
- slam_brake_frame = [[g[0], g[-1]] for g in group_frame]
|
|
|
-
|
|
|
- if slam_brake_time:
|
|
|
- time_df = pd.DataFrame(slam_brake_time, columns=['start_time', 'end_time'])
|
|
|
- frame_df = pd.DataFrame(slam_brake_frame, columns=['start_frame', 'end_frame'])
|
|
|
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
|
|
|
- discomfort_df['type'] = 'slam_brake'
|
|
|
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
|
|
|
-
|
|
|
- time_list = [element for sublist in group_time for element in sublist]
|
|
|
- self.slam_brake_count = len(group_time)
|
|
|
- return time_list
|
|
|
+ """检测急刹车事件"""
|
|
|
+ # 获取数据
|
|
|
+ df = self.ego_df.copy()
|
|
|
+
|
|
|
+ # 检查是否有必要的列
|
|
|
+ if 'slam_brake' not in df.columns:
|
|
|
+ self.logger.warning("缺少计算急刹车指标所需的数据列")
|
|
|
+ return
|
|
|
+
|
|
|
+ # 设置急刹车检测参数
|
|
|
+ min_duration = 0.5 # 最小持续时间 秒
|
|
|
+
|
|
|
+ # 检测连续的急刹车事件
|
|
|
+ slam_brake_events = []
|
|
|
+ in_event = False
|
|
|
+ start_idx = 0
|
|
|
+
|
|
|
+ for i, row in df.iterrows():
|
|
|
+ if row['slam_brake'] == 1 and not in_event:
|
|
|
+ # 开始新的急刹车事件
|
|
|
+ in_event = True
|
|
|
+ start_idx = i
|
|
|
+ elif row['slam_brake'] == 0 and in_event:
|
|
|
+ # 结束当前急刹车事件
|
|
|
+ in_event = False
|
|
|
+ end_idx = i - 1
|
|
|
+
|
|
|
+ # 计算事件持续时间
|
|
|
+ start_time = df.loc[start_idx, 'simTime']
|
|
|
+ end_time = df.loc[end_idx, 'simTime']
|
|
|
+ duration = end_time - start_time
|
|
|
+
|
|
|
+ # 如果持续时间超过阈值,记录为有效急刹车事件
|
|
|
+ if duration >= min_duration:
|
|
|
+ slam_brake_events.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'duration': duration,
|
|
|
+ 'min_lon_acc': df.loc[start_idx:end_idx, 'lon_acc'].min()
|
|
|
+ })
|
|
|
+
|
|
|
+ # 添加到不舒适事件表
|
|
|
+ self.discomfort_df = self.discomfort_df.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'type': 'slam_brake'
|
|
|
+ }, ignore_index=True)
|
|
|
+
|
|
|
+ # 如果最后一个事件没有结束,检查它
|
|
|
+ if in_event:
|
|
|
+ end_idx = len(df) - 1
|
|
|
+ start_time = df.loc[start_idx, 'simTime']
|
|
|
+ end_time = df.loc[end_idx, 'simTime']
|
|
|
+ duration = end_time - start_time
|
|
|
+
|
|
|
+ if duration >= min_duration:
|
|
|
+ slam_brake_events.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'duration': duration,
|
|
|
+ 'min_lon_acc': df.loc[start_idx:end_idx, 'lon_acc'].min()
|
|
|
+ })
|
|
|
+
|
|
|
+ # 添加到不舒适事件表
|
|
|
+ self.discomfort_df = self.discomfort_df.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'type': 'slam_brake'
|
|
|
+ }, ignore_index=True)
|
|
|
+
|
|
|
+ # 更新急刹车计数
|
|
|
+ self.slam_brake_count = len(slam_brake_events)
|
|
|
+ self.logger.info(f"检测到 {self.slam_brake_count} 次急刹车事件")
|
|
|
|
|
|
def _slam_accel_detector(self):
|
|
|
- """急加速检测器"""
|
|
|
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'ip_acc', 'slam_accel']].copy()
|
|
|
- res_df = data.loc[data['slam_accel'] == 1]
|
|
|
- t_list = res_df['simTime'].values
|
|
|
- f_list = res_df['simFrame'].values.tolist()
|
|
|
-
|
|
|
- group_time = []
|
|
|
- group_frame = []
|
|
|
- sub_group_time = []
|
|
|
- sub_group_frame = []
|
|
|
- for i in range(len(f_list)):
|
|
|
- if not group_time or f_list[i] - f_list[i - 1] <= 1: # 连续帧的算作同一组急加速
|
|
|
- sub_group_time.append(t_list[i])
|
|
|
- sub_group_frame.append(f_list[i])
|
|
|
- else:
|
|
|
- group_time.append(sub_group_time)
|
|
|
- group_frame.append(sub_group_frame)
|
|
|
- sub_group_time = [t_list[i]]
|
|
|
- sub_group_frame = [f_list[i]]
|
|
|
-
|
|
|
- group_time.append(sub_group_time)
|
|
|
- group_frame.append(sub_group_frame)
|
|
|
- group_time = [g for g in group_time if len(g) >= 2]
|
|
|
- group_frame = [g for g in group_frame if len(g) >= 2]
|
|
|
-
|
|
|
- # 输出图表值
|
|
|
- slam_accel_time = [[g[0], g[-1]] for g in group_time]
|
|
|
- slam_accel_frame = [[g[0], g[-1]] for g in group_frame]
|
|
|
-
|
|
|
- if slam_accel_time:
|
|
|
- time_df = pd.DataFrame(slam_accel_time, columns=['start_time', 'end_time'])
|
|
|
- frame_df = pd.DataFrame(slam_accel_frame, columns=['start_frame', 'end_frame'])
|
|
|
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
|
|
|
- discomfort_df['type'] = 'slam_accel'
|
|
|
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
|
|
|
-
|
|
|
- time_list = [element for sublist in group_time for element in sublist]
|
|
|
- self.slam_accel_count = len(group_time)
|
|
|
- return time_list
|
|
|
-
|
|
|
-
|
|
|
-class ComfortManager:
|
|
|
- """舒适性指标计算主类"""
|
|
|
-
|
|
|
- def __init__(self, data_processed):
|
|
|
- self.data = data_processed
|
|
|
- self.logger = LogManager().get_logger()
|
|
|
- self.registry = ComfortRegistry(self.data)
|
|
|
-
|
|
|
- def report_statistic(self):
|
|
|
- """生成舒适性评分报告"""
|
|
|
- comfort_result = self.registry.batch_execute()
|
|
|
+ """检测急加速事件"""
|
|
|
+ # 获取数据
|
|
|
+ df = self.ego_df.copy()
|
|
|
|
|
|
- return comfort_result
|
|
|
-
|
|
|
-
|
|
|
-if __name__ == '__main__':
|
|
|
- case_name = 'ICA'
|
|
|
- mode_label = 'PGVIL'
|
|
|
-
|
|
|
- data = data_process.DataPreprocessing(case_name, mode_label)
|
|
|
- comfort_instance = ComfortManager(data)
|
|
|
-
|
|
|
- try:
|
|
|
- comfort_result = comfort_instance.report_statistic()
|
|
|
- result = {'comfort': comfort_result}
|
|
|
- print(result)
|
|
|
- except Exception as e:
|
|
|
- print(f"An error occurred in Comfort.report_statistic: {e}")
|
|
|
+ # 检查是否有必要的列
|
|
|
+ if 'slam_accel' not in df.columns:
|
|
|
+ self.logger.warning("缺少计算急加速指标所需的数据列")
|
|
|
+ return
|
|
|
+
|
|
|
+ # 设置急加速检测参数
|
|
|
+ min_duration = 0.5 # 最小持续时间 秒
|
|
|
+
|
|
|
+ # 检测连续的急加速事件
|
|
|
+ slam_accel_events = []
|
|
|
+ in_event = False
|
|
|
+ start_idx = 0
|
|
|
+
|
|
|
+ for i, row in df.iterrows():
|
|
|
+ if row['slam_accel'] == 1 and not in_event:
|
|
|
+ # 开始新的急加速事件
|
|
|
+ in_event = True
|
|
|
+ start_idx = i
|
|
|
+ elif row['slam_accel'] == 0 and in_event:
|
|
|
+ # 结束当前急加速事件
|
|
|
+ in_event = False
|
|
|
+ end_idx = i - 1
|
|
|
+
|
|
|
+ # 计算事件持续时间
|
|
|
+ start_time = df.loc[start_idx, 'simTime']
|
|
|
+ end_time = df.loc[end_idx, 'simTime']
|
|
|
+ duration = end_time - start_time
|
|
|
+
|
|
|
+ # 如果持续时间超过阈值,记录为有效急加速事件
|
|
|
+ if duration >= min_duration:
|
|
|
+ slam_accel_events.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'duration': duration,
|
|
|
+ 'max_lon_acc': df.loc[start_idx:end_idx, 'lon_acc'].max()
|
|
|
+ })
|
|
|
+
|
|
|
+ # 添加到不舒适事件表
|
|
|
+ self.discomfort_df = self.discomfort_df.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'type': 'slam_accel'
|
|
|
+ }, ignore_index=True)
|
|
|
+
|
|
|
+ # 如果最后一个事件没有结束,检查它
|
|
|
+ if in_event:
|
|
|
+ end_idx = len(df) - 1
|
|
|
+ start_time = df.loc[start_idx, 'simTime']
|
|
|
+ end_time = df.loc[end_idx, 'simTime']
|
|
|
+ duration = end_time - start_time
|
|
|
+
|
|
|
+ if duration >= min_duration:
|
|
|
+ slam_accel_events.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'duration': duration,
|
|
|
+ 'max_lon_acc': df.loc[start_idx:end_idx, 'lon_acc'].max()
|
|
|
+ })
|
|
|
+
|
|
|
+ # 添加到不舒适事件表
|
|
|
+ self.discomfort_df = self.discomfort_df.append({
|
|
|
+ 'start_time': start_time,
|
|
|
+ 'end_time': end_time,
|
|
|
+ 'start_frame': df.loc[start_idx, 'simFrame'],
|
|
|
+ 'end_frame': df.loc[end_idx, 'simFrame'],
|
|
|
+ 'type': 'slam_accel'
|
|
|
+ }, ignore_index=True)
|
|
|
+
|
|
|
+ # 更新急加速计数
|
|
|
+ self.slam_accel_count = len(slam_accel_events)
|
|
|
+ self.logger.info(f"检测到 {self.slam_accel_count} 次急加速事件")
|